Citation: Hong-Yu Luo, Min Zhang, Nai-Chao Si, Min-Jia Meng, Li Yan, Wen-Jing Zhu, Chun-Xiang Li. Molecularly imprinted open porous membranes made from Pickering W/O HIPEs for selective adsorption and separation of methyl 4-hydroxybenzoate[J]. Chinese Chemical Letters, ;2015, 26(8): 1036-1041. doi: 10.1016/j.cclet.2015.04.007 shu

Molecularly imprinted open porous membranes made from Pickering W/O HIPEs for selective adsorption and separation of methyl 4-hydroxybenzoate

  • Corresponding author: Chun-Xiang Li, 
  • Received Date: 14 December 2014
    Available Online: 26 March 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos. 21406085, 21207051). (Nos. 21406085, 21207051)

  • In this study, novel molecularly imprinted open porous membranes (MIOPMs) were prepared using the Pickering HIPEs template method and molecular imprinting technology for selective adsorption and separation of methyl 4-hydroxybenzoate (M4HB). The template M4HB, functional monomers, crosslinker and plastifier 2-ethylhexyl acrylate (2-EHA) were contained in the oil phase. Hydrophobic silica nanoparticles (HNP-SiO2) were employed as a stabilizer to establish stable W/O Pickering HIPEs with nonionic surfactant sorbitantrioleate (Span 85). The results of SEM and FTIR indicated that the optimal MIOPMs were prepared successfully and possessed open and interconnecting pores. Then, the MIOPMs were used as sorbents for M4HB. The correlation coefficient (R2) values for the Langmuir-Freundlich isotherm model and pseudo-second-order kineticmodel fitting to the adsorption equilibrium and kinetic data respectively were all higher than 0.95. The maximum adsorption capacity and the time of rapid adsorption for MIOPM4 were 4.146 mg g-1 and 100 min, respectively. In addition, the permeability separation factor of MIOPMs for M4HB compared to a structurally related analog methyl2-hydroxybenzoate (M2HB) could reach 3.122.
  • 加载中
    1. [1]

      [1] N.R. Cameron, D.C. Sherrington, High internal phase emulsions (HIPEs)—structure, properties and use in polymer preparation, Adv. Polym. Sci. 126 (1996) 163-214.

    2. [2]

      [2] N. Brun, S. Ungureanu, H. Deleuze, R. Backov, Hybrid foams, colloids and beyond: from design to applications, Chem. Soc. Rev. 40 (2011) 771-788.

    3. [3]

      [3] I. Pulko, P. Krajnc, Open cellular reactive porous membranes from high internal phase emulsions, Chem. Commun. 37 (2008) 4481-4483.

    4. [4]

      [4] M.C. Hermant, M. Verhulst, A.V. Kyrylyuk, B. Klumperman, C.E. Koning, The incorporation of single-walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold, Compos. Sci. Technol. 69 (2009) 656-662.

    5. [5]

      [5] H.P. Gao, Y.X. Peng, J.M. Pan, et al., Synthesis and evaluation of macroporous polymerized solid acid derived from Pickering HIPEs for catalyzing cellulose into 5-hydroxymethylfurfural in an ionic liquid, RSC Adv. 4 (2014) 43029-43038.

    6. [6]

      [6] E.H. Mert, M.A. Kaya, H. Yıldırım, Preparation and characterization of polyester-glycidyl methacrylate polyHIPE monoliths to use in heavy metal removal, Des. Monomers Polym. 15 (2012) 113-126.

    7. [7]

      [7] C.H. Wang, X.X. Ma, C. Wang, Q.H. Wu, Z. Wang, Poly(vinylidene fluoride) membrane based thin film microextraction for enrichment of benzoylurea insecticides from water samples followed by their determination with HPLC, Chin. Chem. Lett. 25 (2014) 1625-1629.

    8. [8]

      [8] Z.L. Yang, J.L. Li, C.L. Zhang, Y.F. Lu, Z.Z. Yang, Two-dimensional mesoporous materials: from fragile coatings to flexible membranes, Chin. Chem. Lett. 24 (2013) 89-92.

    9. [9]

      [9] Y.J. Lu, J.H. Jia, The effect of complexing agent on crystal growth, structure and properties of nanostructured Cu2-xS thin films, Chin. Chem. Lett. 25 (2014) 1473-1478.

    10. [10]

      [10] J.S. Park, E. Ruckenstein, Selective permeation through hydrophobic-hydrophilic membranes, J. Appl. Polym. Sci. 38 (1989) 453-461.

    11. [11]

      [11] E. Ruckenstein, J.S. Park, The separation of water-ethanol mixtures by pervaporation through hydrophilic-hydrophobic composite membranes, J. Appl. Polym. Sci. 40 (1990) 213-220.

    12. [12]

      [12] P. Krajnc, N. Leber, D. Štefanec, S. Kontrec, A. Podgornik, Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media, J. Chromatogr. A 1065 (2005) 69-73.

    13. [13]

      [13] I. Pulko, V. Smrekar, A. Podgornik, P. Krajnc, Emulsion templated open porous membranes for protein purification, J. Chromatogr. A 1218 (2011) 2396-2401.

    14. [14]

      [14] J. Lee, S. Bernard, X.C. Liu, Nanostructured biomimetic catalysts for asymmetric hydrogenation of enamides using molecular imprinting technology, React. Funct. Polym. 69 (2009) 650-654.

    15. [15]

      [15] M.J. Whitcombe, N. Kirsch, I.A. Nicholls, Molecular imprinting science and technology: a survey of the literature for the years 2004-2011, J. Mol. Recognit. 27 (2014) 297-401.

    16. [16]

      [16] K. Haupt, Molecularly imprinted polymers: the next generation, Anal. Chem. 75 (2003) 376A-383A.

    17. [17]

      [17] S.G. Dmitrienko, V.V. Irkha, V.V. Apyari, E.V. Klokova, Y.A. Zolotov, Recognition of hydroxybenzoic acids and their esters by molecularly imprinted polymers, Mendeleev Commun. 18 (2008) 315-317.

    18. [18]

      [18] M.S. da Silva, R. Viveiros, V.D.B. Bonifá cio, A. Aguiar-Ricardo, T. Casimiro, Supercritical fluid technology as a new strategy for the development of semi-covalent molecularly imprinted materials, RSC Adv. 2 (2012) 5075-5079.

    19. [19]

      [19] A. Lourenço, R. Viveiros, A. Moro, et al., Supercritical CO2-assisted synthesis of an ultrasensitive amphibious quantum dot-molecularly imprinted sensor, RSC Adv. 4 (2014) 63338-63341.

    20. [20]

      [20] Y.L. Wu, Y.S. Yan, J.M. Pan, et al., Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization, Chin. Chem. Lett. 25 (2014) 273-278.

    21. [21]

      [21] M. Fang, F. Lei, J. Zhou, Y.N. Wu, Z.Y. Gong, Rapid, simple and selective determination of 2,4-dinitrophenol by molecularly imprinted spin column extraction coupled with fluorescence detection, Chin. Chem. Lett. 25 (2014) 1492-1494.

    22. [22]

      [22] J.M. Pan, Q. Qu, J. Cao, et al., Molecularly imprinted polymer foams with welldefined open-cell structure derived from Pickering HIPEs and their enhanced recognition of l-cyhalothrin, Chem. Eng. J. 253 (2014) 138-147.

    23. [23]

      [23] M.G. Soni, S.L. Taylor, N.A. Greenberg, G.A. Burdock, Evaluation of the health aspects of methyl paraben: a review of the published literature, Food Chem. Toxicol. 40 (2002) 1335-1373.

    24. [24]

      [24] O. Handa, S. Kokura, S. Adachi, et al., Methylparaben potentiates UV-induced damage of skin keratinocytes, Toxicology 227 (2006) 62-72.

    25. [25]

      [25] Y. Okamoto, T. Hayashi, S. Matsunami, K. Ueda, N. Kojima, Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage, Chem. Res. Toxicol. 21 (2008) 1594-1599.

    26. [26]

      [26] K. Kannathasan, A. Senthilkumar, V. Venkatesalu, Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn, Acta Trop. 120 (2011) 115-118.

    27. [27]

      [27] S.W. Zou, Y. Yang, H. Liu, C.Y. Wang, Synergistic stabilization and tunable structures of Pickering high internal phase emulsions by nanoparticles and surfactants, Colloid Surf. A 436 (2013) 1-9.

    28. [28]

      [28] Y.L. Wu, M.J. Meng, X.L. Liu, et al., Efficient one-pot synthesis of artemisininimprinted membrane by direct surface-initiated AGET-ATRP, Sep. Purif. Technol. 131 (2014) 117-125.

    29. [29]

      [29] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004) 322-333.

    30. [30]

      [30] M. Mazzotti, Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm, J. Chromatogr. A 1126 (2006) 311-322.

    31. [31]

      [31] Y.S. Ho, G. McKay, The sorption of lead (II) ions on peat, Water Res. 33 (1999) 578-584.

    32. [32]

      [32] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    3. [3]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    4. [4]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    5. [5]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    6. [6]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    7. [7]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    8. [8]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Weiwei HeHongbo ZhangXudong LinLili ZhuTingting ZhengHao PeiYang TianMin ZhangGuoyue ShiLei WuJianlong ZhaoGulinuer WumaierShengqing LiYufang XuHonglin LiXuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    13. [13]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    14. [14]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    15. [15]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    16. [16]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    17. [17]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    18. [18]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    19. [19]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    20. [20]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

Metrics
  • PDF Downloads(0)
  • Abstract views(641)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return