Citation: Hong-Yu Luo, Min Zhang, Nai-Chao Si, Min-Jia Meng, Li Yan, Wen-Jing Zhu, Chun-Xiang Li. Molecularly imprinted open porous membranes made from Pickering W/O HIPEs for selective adsorption and separation of methyl 4-hydroxybenzoate[J]. Chinese Chemical Letters, ;2015, 26(8): 1036-1041. doi: 10.1016/j.cclet.2015.04.007
-
In this study, novel molecularly imprinted open porous membranes (MIOPMs) were prepared using the Pickering HIPEs template method and molecular imprinting technology for selective adsorption and separation of methyl 4-hydroxybenzoate (M4HB). The template M4HB, functional monomers, crosslinker and plastifier 2-ethylhexyl acrylate (2-EHA) were contained in the oil phase. Hydrophobic silica nanoparticles (HNP-SiO2) were employed as a stabilizer to establish stable W/O Pickering HIPEs with nonionic surfactant sorbitantrioleate (Span 85). The results of SEM and FTIR indicated that the optimal MIOPMs were prepared successfully and possessed open and interconnecting pores. Then, the MIOPMs were used as sorbents for M4HB. The correlation coefficient (R2) values for the Langmuir-Freundlich isotherm model and pseudo-second-order kineticmodel fitting to the adsorption equilibrium and kinetic data respectively were all higher than 0.95. The maximum adsorption capacity and the time of rapid adsorption for MIOPM4 were 4.146 mg g-1 and 100 min, respectively. In addition, the permeability separation factor of MIOPMs for M4HB compared to a structurally related analog methyl2-hydroxybenzoate (M2HB) could reach 3.122.
-
-
[1]
[1] N.R. Cameron, D.C. Sherrington, High internal phase emulsions (HIPEs)—structure, properties and use in polymer preparation, Adv. Polym. Sci. 126 (1996) 163-214.
-
[2]
[2] N. Brun, S. Ungureanu, H. Deleuze, R. Backov, Hybrid foams, colloids and beyond: from design to applications, Chem. Soc. Rev. 40 (2011) 771-788.
-
[3]
[3] I. Pulko, P. Krajnc, Open cellular reactive porous membranes from high internal phase emulsions, Chem. Commun. 37 (2008) 4481-4483.
-
[4]
[4] M.C. Hermant, M. Verhulst, A.V. Kyrylyuk, B. Klumperman, C.E. Koning, The incorporation of single-walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold, Compos. Sci. Technol. 69 (2009) 656-662.
-
[5]
[5] H.P. Gao, Y.X. Peng, J.M. Pan, et al., Synthesis and evaluation of macroporous polymerized solid acid derived from Pickering HIPEs for catalyzing cellulose into 5-hydroxymethylfurfural in an ionic liquid, RSC Adv. 4 (2014) 43029-43038.
-
[6]
[6] E.H. Mert, M.A. Kaya, H. Yıldırım, Preparation and characterization of polyester-glycidyl methacrylate polyHIPE monoliths to use in heavy metal removal, Des. Monomers Polym. 15 (2012) 113-126.
-
[7]
[7] C.H. Wang, X.X. Ma, C. Wang, Q.H. Wu, Z. Wang, Poly(vinylidene fluoride) membrane based thin film microextraction for enrichment of benzoylurea insecticides from water samples followed by their determination with HPLC, Chin. Chem. Lett. 25 (2014) 1625-1629.
-
[8]
[8] Z.L. Yang, J.L. Li, C.L. Zhang, Y.F. Lu, Z.Z. Yang, Two-dimensional mesoporous materials: from fragile coatings to flexible membranes, Chin. Chem. Lett. 24 (2013) 89-92.
-
[9]
[9] Y.J. Lu, J.H. Jia, The effect of complexing agent on crystal growth, structure and properties of nanostructured Cu2-xS thin films, Chin. Chem. Lett. 25 (2014) 1473-1478.
-
[10]
[10] J.S. Park, E. Ruckenstein, Selective permeation through hydrophobic-hydrophilic membranes, J. Appl. Polym. Sci. 38 (1989) 453-461.
-
[11]
[11] E. Ruckenstein, J.S. Park, The separation of water-ethanol mixtures by pervaporation through hydrophilic-hydrophobic composite membranes, J. Appl. Polym. Sci. 40 (1990) 213-220.
-
[12]
[12] P. Krajnc, N. Leber, D. Štefanec, S. Kontrec, A. Podgornik, Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media, J. Chromatogr. A 1065 (2005) 69-73.
-
[13]
[13] I. Pulko, V. Smrekar, A. Podgornik, P. Krajnc, Emulsion templated open porous membranes for protein purification, J. Chromatogr. A 1218 (2011) 2396-2401.
-
[14]
[14] J. Lee, S. Bernard, X.C. Liu, Nanostructured biomimetic catalysts for asymmetric hydrogenation of enamides using molecular imprinting technology, React. Funct. Polym. 69 (2009) 650-654.
-
[15]
[15] M.J. Whitcombe, N. Kirsch, I.A. Nicholls, Molecular imprinting science and technology: a survey of the literature for the years 2004-2011, J. Mol. Recognit. 27 (2014) 297-401.
-
[16]
[16] K. Haupt, Molecularly imprinted polymers: the next generation, Anal. Chem. 75 (2003) 376A-383A.
-
[17]
[17] S.G. Dmitrienko, V.V. Irkha, V.V. Apyari, E.V. Klokova, Y.A. Zolotov, Recognition of hydroxybenzoic acids and their esters by molecularly imprinted polymers, Mendeleev Commun. 18 (2008) 315-317.
-
[18]
[18] M.S. da Silva, R. Viveiros, V.D.B. Bonifá cio, A. Aguiar-Ricardo, T. Casimiro, Supercritical fluid technology as a new strategy for the development of semi-covalent molecularly imprinted materials, RSC Adv. 2 (2012) 5075-5079.
-
[19]
[19] A. Lourenço, R. Viveiros, A. Moro, et al., Supercritical CO2-assisted synthesis of an ultrasensitive amphibious quantum dot-molecularly imprinted sensor, RSC Adv. 4 (2014) 63338-63341.
-
[20]
[20] Y.L. Wu, Y.S. Yan, J.M. Pan, et al., Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization, Chin. Chem. Lett. 25 (2014) 273-278.
-
[21]
[21] M. Fang, F. Lei, J. Zhou, Y.N. Wu, Z.Y. Gong, Rapid, simple and selective determination of 2,4-dinitrophenol by molecularly imprinted spin column extraction coupled with fluorescence detection, Chin. Chem. Lett. 25 (2014) 1492-1494.
-
[22]
[22] J.M. Pan, Q. Qu, J. Cao, et al., Molecularly imprinted polymer foams with welldefined open-cell structure derived from Pickering HIPEs and their enhanced recognition of l-cyhalothrin, Chem. Eng. J. 253 (2014) 138-147.
-
[23]
[23] M.G. Soni, S.L. Taylor, N.A. Greenberg, G.A. Burdock, Evaluation of the health aspects of methyl paraben: a review of the published literature, Food Chem. Toxicol. 40 (2002) 1335-1373.
-
[24]
[24] O. Handa, S. Kokura, S. Adachi, et al., Methylparaben potentiates UV-induced damage of skin keratinocytes, Toxicology 227 (2006) 62-72.
-
[25]
[25] Y. Okamoto, T. Hayashi, S. Matsunami, K. Ueda, N. Kojima, Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage, Chem. Res. Toxicol. 21 (2008) 1594-1599.
-
[26]
[26] K. Kannathasan, A. Senthilkumar, V. Venkatesalu, Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn, Acta Trop. 120 (2011) 115-118.
-
[27]
[27] S.W. Zou, Y. Yang, H. Liu, C.Y. Wang, Synergistic stabilization and tunable structures of Pickering high internal phase emulsions by nanoparticles and surfactants, Colloid Surf. A 436 (2013) 1-9.
-
[28]
[28] Y.L. Wu, M.J. Meng, X.L. Liu, et al., Efficient one-pot synthesis of artemisininimprinted membrane by direct surface-initiated AGET-ATRP, Sep. Purif. Technol. 131 (2014) 117-125.
-
[29]
[29] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004) 322-333.
-
[30]
[30] M. Mazzotti, Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm, J. Chromatogr. A 1126 (2006) 311-322.
-
[31]
[31] Y.S. Ho, G. McKay, The sorption of lead (II) ions on peat, Water Res. 33 (1999) 578-584.
-
[32]
[32] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.
-
[1]
-
-
[1]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[2]
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
-
[3]
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
-
[4]
Juan CHEN , Guoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341
-
[5]
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
-
[6]
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
-
[7]
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
-
[8]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[9]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[10]
Weiwei He , Hongbo Zhang , Xudong Lin , Lili Zhu , Tingting Zheng , Hao Pei , Yang Tian , Min Zhang , Guoyue Shi , Lei Wu , Jianlong Zhao , Gulinuer Wumaier , Shengqing Li , Yufang Xu , Honglin Li , Xuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091
-
[11]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[12]
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
-
[13]
Jianwen Zhao , Shuai Wang , Shanshan Zhao , Liwei Chen , Fangang Meng , Xuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883
-
[14]
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
-
[15]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[16]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[17]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[18]
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
-
[19]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[20]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(641)
- HTML views(2)