Citation: Goravanahalli M. Raghavendra, Chottanahalli S. Pavan Kumar, Gejjalagere P. Suresha, Kanchugarakoppal S. Rangappa, Kempegowda Mantelingu. T3P catalyzed one pot three-component synthesis of 2,3-disubstituted 3H-quinazolin-4-ones[J]. Chinese Chemical Letters, ;2015, 26(8): 963-968. doi: 10.1016/j.cclet.2015.03.037 shu

T3P catalyzed one pot three-component synthesis of 2,3-disubstituted 3H-quinazolin-4-ones

  • Corresponding author: Kanchugarakoppal S. Rangappa,  Kempegowda Mantelingu, 
  • Received Date: 25 December 2014
    Available Online: 27 February 2015

    Fund Project: Financial support from DST-Fast track, New Delhi (No. SERB/F/ 2013-14) is gratefully acknowledged. (No. SERB/F/ 2013-14)

  • An efficient methodology for the synthesis of 2,3-disubstituted 3H-quinazolin-4-ones is described via one-pot three component reaction from anthranilic acid using T3P as catalyst. Mild reaction conditions, short reaction time, broad functional group tolerance, easy isolation of products and good yields are main advantages of this protocol.
  • 加载中
    1. [1]

      [1] A. Dö mling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.

    2. [2]

      [2] C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug discovery ‘From Xylocain to Crixivan’, Curr. Med. Chem. 10 (2003) 51-80.

    3. [3]

      [3] J. Zhu, Recent developments in the isonitrile-based multicomponent synthesis of heterocycles, Eur. J. Org. Chem. (2003) 1133-1144.

    4. [4]

      [4] A. Dö mling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3168-3210.

    5. [5]

      [5] (a) L. Weber, High-diversity combinatorial libraries, Curr. Opin. Chem. Biol. 4 (2000) 295-302; (b) A. Domling, Recent advances in isocyanide-based multicomponent chemistry, Curr. Opin. Chem. Biol. 6 (2002) 306-313.

    6. [6]

      [6] S.B. Mhaske, N.P. Argade, The chemistry of recently isolated naturally occurring quinazolinone alkaloids, Tetrahedron 62 (2006) 9787-9826.

    7. [7]

      [7] T. Onaka, A general three-step synthesis of pyrrolidino[2,1-b]quinazolone alkaloids via biogenetically patterned path, Tetrahedron Lett. 12 (1971) 4387-4390.

    8. [8]

      [8] A. Hamid, A. Elomri, A. Daich, Expedious and practical synthesis of the bioactive alkaloidsrutaecarpine, euxylophoricine A, deoxyvasicinone and their heterocyclic homologues, Tetrahedron Lett. 47 (2006) 1777-1781.

    9. [9]

      [9] J.R. Sheu, Pharmacological effects of rutaecarpine, an alkaloid isolated from evodia rutaecarpa, Cardiovasc. Drug Rev. 17 (1999) 237-245.

    10. [10]

      [10] J. Michel, Quinoline, quinazoline and acridone alkaloids, Nat. Prod. Rep. 21 (2004) 650-668.

    11. [11]

      [11] A.M. Al-Obaid, S.G. Abdel-Hamide, H.A. El-Kashef, et al., Substituted quinazolines, part 3. Synthesis, in vitro antitumor activity and molecular modeling study of certain 2-thieno-4(3H)-quinazolinone analogs, Eur. J. Med. Chem. 44 (2009) 2379-2391.

    12. [12]

      [12] A.S. El-Azab, M.A. Al-Omar, A.A. Abdel-Aziz, et al., Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: molecular docking study, Eur. J. Med. Chem. 45 (2010) 4188-4198.

    13. [13]

      [13] J.F. Wolfe, T.L. Rathman, M.C. Sleevi, J.A. Campbell, T.D. Greenwood, Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)-quinazolinones, J. Med. Chem. 33 (1999) 161-166.

    14. [14]

      [14] K. Terashima, H. Shimamura, A. Kawase, et al., Studies on antiulcer agents. IV: Antiulcer effects of 2-benzylthio-5,6,7,8-tetrahydro-4(3H)-quinazolinones and related compounds, Chem. Pharm. Bull. 43 (1995) 2021-2023.

    15. [15]

      [15] J.B. Koepfli, J.F. Mead, J.A. Brockman Jr., An alkaloid with high antimalarial activity from dichroa-febrifuga, J. Am. Chem. Soc. 69 (1947) 1837.

    16. [16]

      [16] S. Kobayashi, M. Ueno, R. Suzuki, H. Ishitani, Catalytic asymmetric synthesis of febrifugine and isofebrifugine, Tetrahedron Lett. 40 (1999) 2175-2178.

    17. [17]

      [17] S.L. Cao, Y.P. Feng, Y.Y. Jiang, et al., Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains, Bioorg. Med. Chem. Lett. 15 (2005) 1915-1917.

    18. [18]

      [18] M.A.G. Nagwa, H.G. Hanan, M.Y. Riham, A.E.S. Nehad, Synthesis and antitumor activity of some 2,3-disubstituted quinazolin-4(3H)-ones and 4,6-disubstituted-1,2,3,4-tetrahydroquinazolin-2H-ones, Eur. J. Med. Chem. 45 (2010) 6058-6067.

    19. [19]

      [19] C. Huang, Y. Fu, H. Fu, Y. Jiang, Y. Zhao, Highly efficient copper-catalyzed cascade synthesis of quinazoline and quinazolinone derivatives, Chem. Commun. 46 (2008) 6333-6335.

    20. [20]

      [20] J.F. Liu, J. Lee, M.A. Dalton, et al., Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones, Tetrahedron Lett. 46 (2005) 1241-1244.

    21. [21]

      [21] I.K. Kostakis, A. Elomri, E. Segunin, M. Iannelli, T. Besson, Rapid synthesis of 2,3-disubstituted quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide, Tetrahedron Lett. 48 (2007) 6609-6613.

    22. [22]

      [22] M. Adib, E. Sheikhi, H.R. Bijanzadeh, Benzyl halides, that are first oxidized to aldehydes under mild Kornblum conditions, undergo a three-component reaction with isatoic anhydride and primary amines to produce 4(3H)-quinazolinones in excellent yields, Synlett 23 (2012) 85-88.

    23. [23]

      [23] A. Kumar, A.K. Bishnoi, Nanoparticle mediated organic synthesis (NAMO-synthesis): CuI-NP catalyzed ligand free amidation of aryl halides, RSC Adv. 4 (2014) 41631-41635.

    24. [24]

      [24] H. Wei, T. Li, Y. Zhou, L. Zhou, Q. Zeng, Copper-catalyzed domino synthesis of quinazolin-4(3H)-ones from (hetero) arylmethyl halides, bromoacetate, and cinnamyl bromide, Synthesis 45 (2013) 3349-3354.

    25. [25]

      [25] J. Zhou, L. Fu, M. Lv, et al., Copper(I) iodide catalyzed domino process to quinazolin-4(3H)-ones, Synthesis 24 (2008) 3974-3980.

    26. [26]

      [26] J. Raid, J.V. Wolfgang, S. Muhammad, A novel method for the synthesis of 4(3H)-quinazolinones, Tetrahedron Lett. 45 (2004) 3475-3476.

    27. [27]

      [27] H. Wissmann, H.J. Kleiner, New peptide synthesis, Angew. Chem. 92 (1980) 133-134.

    28. [28]

      [28] R. Escher, P. Bunning, Synthesis of N-(1-Carboxy-5-aminopentyl)dipeptides as inhibitors of angiotensin converting enzyme, Angew. Chem. Int. Ed. 25 (1986) 277-278.

    29. [29]

      [29] N. Basavaprabhu, R.S. Narendra, V.V. Lamani, Sureshbabu, T3P® (propylphosphonic anhydride) mediated conversion of carboxylic acids into acid azides and one-pot synthesis of ureidopeptides, Tetrahedron Lett. 51 (2010) 3002-3005.

    30. [30]

      [30] B.S. Patil, G.R. Vasanthakumar, V.V. Sureshbabu, Isocyanates of N α-[(9-fluorenylmethyl) oxy]carbonyl amino acids: synthesis, isolation, characterization, and application to the efficient synthesis of urea peptidomimetics, J. Org. Chem. 68 (2003) 7274-7280.

    31. [31]

      [31] J.K. Augustine, A. Bombrun, A.B. Mandal, et al., Propylphosphonic anhydride (T3P1)-mediated one-pot rearrangement of carboxylic acids to carbamates, Synthesis 9 (2011) 1477-1483.

    32. [32]

      [32] M. Desroses, T. Koolmeister, S. Jacques, et al., A facile and efficient synthesis of tetrahydro-β-carbolines, Tetrahedron Lett. 54 (2013) 3554-3557.

    33. [33]

      [33] T.M. Basavaprabhu, N.R. Vishwanatha, V.V. Panguluri, Sureshbabu, Propanephosphonic acid anhydride (T3P®) -a benign reagent for diverse applications inclusive of large-scale synthesis, Synthesis 45 (2013) 1569-1601.

    34. [34]

      [34] G.M. Raghavendra, A.B. Ramesha, C.N. Revanna, et al., One-pot tandem approach for the synthesis of benzimidazoles and benzothiazoles from alcohols, Tetrahedron Lett. 52 (2011) 5571-5574.

    35. [35]

      [35] A.B. Ramesha, G.M. Raghavendra, K.N. Nandeesh, K.S. Rangappa, K. Mantelingu, Tandem approach for the synthesis of imidazo[1,2-a]pyridines from alcohols, Tetrahedron Lett. 54 (2013) 95-100.

    36. [36]

      [36] C.N. Revanna, G.M. Raghavendra, T.A. Jenifer Vijay, et al., Propylphosphonic anhydride-catalyzed tandem approach for biginelli reaction starting from alcohols, Chem. Lett. 43 (2014) 178-180.

  • 加载中
    1. [1]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    2. [2]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    3. [3]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    4. [4]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    5. [5]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    6. [6]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    7. [7]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    8. [8]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    9. [9]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    10. [10]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    11. [11]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    19. [19]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(0)
  • Abstract views(829)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return