Citation:
Mao Cai, Jie Hu, Ji-Lai Tian, Huang Yan, Chen-Guo Zheng, Wan-Le Hu. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities[J]. Chinese Chemical Letters,
;2015, 26(6): 675-680.
doi:
10.1016/j.cclet.2015.03.015
-
Novel hybrid molecules 8a-8o were designed and synthesized by connecting indole ring with N-hydroxyarylamide through alkyl substituted triazole, and their in vitro biological activities were evaluated. It was discovered that most of target compounds showed promising anticancer activities, particularly for 8n, which had a significant HDACs inhibitory and antiproliferative activities comparable to or slightly stronger than SAHA against human carcinoma cells. Furthermore, compound 8n exhibited much better selectivity for HDAC1 over HDAC6 and HDAC8 than SAHA. In addition, compound 8n also could dose-dependently induce cancer cell cycling arrest at G0/G1 phase and promote the expression of the acetylation for histone H3 and tubulin in vitro. Therefore, our novel findings may provide a new framework for the design of new selective HDAC inhibitor for the treatment of cancer.
-
-
-
[1]
[1] Z. Li, W.G. Zhu, Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications, Int. J. Biol. Sci. 10 (2014) 757-770.
-
[2]
[2] C.B. Yoo, P.A. Jones, Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov. 5 (2006) 37-50.
-
[3]
[3] L. Simó-Riudalbas, M. Esteller, Targeting the histone orthography of cancer: drugs for writers, erasers and readers, Br, J. Pharmacol. 172 (2015) 2716-2732.
-
[4]
[4] H. Lehrmann, L.L. Pritchard, A. Harel-Bellan, et al., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation, Adv. Cancer Res. 86 (2002) 41-65.
-
[5]
[5] B.E. Bernstein, J.K. Tong, S.L. Schreiber, Genome wide studies of histone deacetylase function in yeast, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13708-13713.
-
[6]
[6] O. Witt, H.E. Deubzer, T. Milde, I. Oehme, et al., HDAC family: what are the cancer relevant targets, Cancer Lett. 277 (2009) 8-21.
-
[7]
[7] P. Bose, Y. Dai, S. Grant, Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights, Pharmacol. Ther. 143 (2014) 323-336.
-
[8]
[8] A.C. West, R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment, J. Clin. Invest. 124 (2014) 30-39.
-
[9]
[9] M. Slingerland, H.J. Guchelaar, H. Gelderblom, Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors, Anticancer Drugs 25 (2014) 140-149.
-
[10]
[10] P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene 26 (2007) 1351-1356.
-
[11]
[11] FK228: http://www.fda.gov/NewsEvents/Newsroom/Press Announcements/2009/ucm189629.htm.
-
[12]
[12] T. Qiu, L. Zhou, W. Zhu, et al., Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials, Future Oncol. 9 (2013) 255-269.
-
[13]
[13] T. You, K. Chen, F.H. Wang, et al., Design, synthesis, and biological evaluation of Nhydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors, Chin. Chem. Lett. 25 (2014) 474-478.
-
[14]
[14] T.A. Miller, D.J. Witter, S. Belvedere, Histone deacetylase inhibitors, J. Med. Chem. 46 (2003) 5097-5116.
-
[15]
[15] P.A. Marks, The clinical development of histone deacetylase inhibitors as targeted anticancer drugs, Expert Opin. Invest. Drugs 19 (2010) 1049-1066.
-
[16]
[16] J. McDermott, A. Jimeno, Belinostat for the treatment of peripheral T-cell lymphomas, Drugs Today (Barc.) 50 (2014) 337-345.
-
[17]
[17] W.P. Yong, B.C. Goh, R.A. Soo, et al., Phase I and pharmacodynamic study of an orally administered novel inhibitor of histone deacetylases, SB939, in patients with refractory solid malignancies, Ann. Oncol. 22 (2011) 2516-2522.
-
[18]
[18] J.S. de Bono, R. Kristeleit, A. Tolcher, et al., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors, Clin. Cancer Res. 14 (2008) 6663-6673.
-
[19]
[19] S. Fouliard, R. Robert, A. Jacquet-Bescond, et al., Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I, Eur. J. Cancer 49 (2013) 2791-2797.
-
[20]
[20] A. Furlan, V. Monzani, L.L. Reznikov, et al., Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat), Mol. Med. 17 (2011) 353-362.
-
[21]
[21] Ø. Bruserud, C. Stapnes, E. Ersvaer, et al., Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell, Curr. Pharm. Biotechnol. 8 (2007) 388-400.
-
[22]
[22] J. Amato, N. Iaccarino, B. Pagano, et al., Bis-indole derivatives with antitumor activity turn out to be specific ligands of human telomeric G-quadruplex, Front. Chem. 2 (2014) 54.
-
[23]
[23] M.T. Macdonough, T.E. Strecker, E. Hamel, et al., Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(30-hydroxy-40-methoxyphenyl)-3-(300,400,500-trimethoxybenzoyl)-6-methoxyindole (OXi8006), Bioorg. Med. Chem. 21 (2013) 6831-6843.
-
[24]
[24] Y.S. Cho, L. Whitehead, J. Li, et al., Conformational refinement of hydroxamatebased histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824), J. Med. Chem. 53 (2010) 2952-2963.
-
[25]
[25] C.D. Hein, X.M. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.
-
[26]
[26] G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28 (2008) 278-308.
-
[27]
[27] A.R. Bogdan, K. James, Efficient access to new chemical space through flowconstruction of druglike macrocycles through copper-surface-catalyzed azidealkyne cycloaddition reactions, Chemistry 16 (2010) 14506-14512.
-
[28]
[28] The data of selected compounds: 8c: Yield: 86%, mp 116-119℃; ESI-MSm/z: 390[M+H]+. 1H NMR (300 MHz, DMSO-d6):δ5.31 (s, 2H), 5.43 (s, 2H), 6.55 (d, 1H, J = 15.9 Hz), 6.96-6.99 (m, 2H), 7.08-7.11 (m, 2H), 7.15 (d, 1H, J = 2.4 Hz), 7.35 (m, 1H), 7.57 (d, 1H, J = 7.8 Hz), 7.63-7.68 (m, 3H), 7.79 (s, 1H), 8.96 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.5, 71.2, 107.4, 111.8, 115.6, 118.2, 118.5, 119.3, 120.7, 122.7, 123.1, 127.1, 130.5, 136.0, 139.2, 146.3, 155.1, 164.6. ESIHRMS (m/z): [M+H]+ calcd. for C21H20N5O3: 390.1566; found: 390.1558. 8d: Yield: 83%, mp 123-125℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.81 (s, 3H), 5.29 (s, 2H), 5.50 (s, 2H), 6.53 (d, 1H, J = 15.9 Hz), 6.94-6.97 (m, 3H), 7.08-7.10 (m, 2H), 7.15-7.21 (m, 3H), 7.33 (d, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 15.9 Hz), 7.77 (s, 1H), 8.91 (s, 1H), 10.35 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.0, 56.3, 71.5, 107.7, 110.7, 111.6, 114.4, 118.3, 118.9, 119.5, 121.0, 122.9, 123.3, 127.6, 136.3, 138.9, 146.2, 146.5, 154.8, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1665. 8i: Yield: 89%, mp 105-108℃; ESI-MS m/z: 434 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ2.61 (t, 2H, J = 6.6 Hz), 3.37 (t, 2H, J = 6.6 Hz), 3.83 (s, 3H), 5.33 (s, 2H), 6.56 (d, 1H, J = 15.9 Hz), 6.92-6.98 (m, 3H), 7.09-7.12 (m, 2H), 7.17-7.22 (m, 3H), 7.35 (d, 1H, J = 7.8 Hz), 7.57 (d, 1H, J = 7.8 Hz), 7.65 (d, 1H, J = 15.9 Hz), 7.80 (s, 1H), 8.95 (s, 1H), 10.39 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ28.1, 50.3, 56.5, 71.3, 106.9, 110.5, 111.3, 114.5, 117.8, 118.5, 119.2, 120.7, 122.5, 123.1, 127.3, 136.3, 138.9, 146.2, 146.7, 155.1, 164.9. ESI-HRMS (m/z):[M+H]+ calcd. for C23H24N5O4: 434.1828; found: 434.1842. 8m: Yield: 82%, mp 121-124℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.80 (s, 3H), 5.30 (s, 2H), 5.46 (s, 2H), 6.52 (d, 1H, J = 15.9 Hz), 6.76 (m, 1H), 6.96 (d, 2H, J = 8.4 Hz), 7.11-7.15 (m, 2H), 7.22 (d, 1H, J = 7.8 Hz), 7.61-7.66 (m, 3H), 7.75 (s, 1H), 8.87 (s, 1H), 10.25 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.1, 56.8, 71.5, 102.1, 111.9, 112.2, 115.5, 118.4, 122.6, 123.3, 128.3, 129.1, 130.1, 138.9, 146.2, 146.6, 155.3, 165.1. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1681. 8n: Yield: 85%, mp 110-112℃; ESI-MS m/z: 450 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.83 (s, 6H), 5.35 (s, 2H), 5.53 (s, 2H), 6.57 (d, 1H, J = 15.9 Hz), 6.79 (m, 1H), 6.95-7.00 (m, 3H), 7.12-7.23 (m, 5H), 7.65 (d, 1H, J = 15.9 Hz), 7.81 (s, 1H), 8.97 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.3, 56.8, 71.6, 101.9, 110.3, 111.1, 112.1, 112.7, 118.5, 122.5, 123.2, 128.9, 129.3, 130.4, 138.7, 146.2, 146.4, 146.8, 154.7, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C23H24N5O5: 450.1777; found: 450.1786. 8o: Yield: 83%, mp 118-120℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.79 (s, 3H), 5.32 (s, 2H), 5.45 (s, 2H), 6.50 (d, 1H, J = 15.9 Hz), 6.88-6.93 (m, 2H), 7.09-7.17 (m, 4H), 7.24 (d, 1H, J = 7.8 Hz), 7.53 (m, 1H), 7.62 (d, 1H, J = 15.9 Hz), 7.73 (s, 1H), 8.82 (s, 1H), 10.33 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.8, 71.5, 102.0, 112.0, 112.4, 114.7, 118.5, 122.7, 123.1, 128.0, 128.5, 130.2, 137.6, 146.2, 146.4, 155.3, 164.9. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1659.
-
[1]
-
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Yang Liu , Minglu Li , Jianxun Ding , Xuesi Chen . Glycoengineering-assistant biomineralization for tumor blockade therapy. Chinese Chemical Letters, 2025, 36(5): 110146-. doi: 10.1016/j.cclet.2024.110146
-
[3]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[4]
Haijiao Li , Mingzu Zhang , Jinlin He , Jian Liu , Xingwei Sun , Peihong Ni . Synthesis of curcumin polyprodrug via click chemistry and construction of dual-drug-loaded nano platform for highly efficient tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110615-. doi: 10.1016/j.cclet.2024.110615
-
[5]
Mianling Yang , Meehyein Kim , Peng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455
-
[6]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[7]
Lei Feng , Ze-Min Zhu , Ying Yang , Zongbin He , Jiafeng Zou , Man-Bo Li , Yan Zhao , Zhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029
-
[8]
Ying Chen , Ronghua Yan , Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066
-
[9]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[10]
Chanqi Ye , Jia Zhang , Jie Shen , Ruyin Chen , Qiong Li , Peng Zhao , Dong Chen , Jian Ruan . Attractive Pickering emulsion gel loaded with oxaliplatin and lactate dehydrogenase inhibitor increases the anti-tumor effect in hepatocellular carcinoma. Chinese Chemical Letters, 2025, 36(7): 110519-. doi: 10.1016/j.cclet.2024.110519
-
[11]
Huijuan Zhang , Chenglin Liang , Xinyi Ding , Meng Zhang , Siyu Lu , Lin Hou . Manganese-based nano-delivery system for sensitized anti-tumor immunotherapy via combined autophagy inhibition. Chinese Chemical Letters, 2025, 36(7): 110525-. doi: 10.1016/j.cclet.2024.110525
-
[12]
Rongrong Zheng , Zuxiao Chen , Qiuyuan Li , Ni Yang , Wenjun Zhang , Chuyu Huang , Linping Zhao , Xin Chen , Hong Cheng , Shiying Li . Endoplasmic reticulum targeting photodynamic oxidizer to boost anti-tumor immunity by intensifying immunogenic cell death in conjunction with IDO1 inhibition. Chinese Chemical Letters, 2025, 36(12): 110865-. doi: 10.1016/j.cclet.2025.110865
-
[13]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[14]
Qianyun Ye , Yuanyuan Liang , Yuhe Yuan , Xiaohuan Sun , Liqi Zhu , Xuan Wu , Jie Han , Rong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432
-
[15]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[16]
Tengfei Xuan , Yuan Pan , Zhenyu Shi , Yang Wang . Organocatalytic asymmetric synthesis of oxazolines from N-acylimines. Chinese Chemical Letters, 2025, 36(6): 110352-. doi: 10.1016/j.cclet.2024.110352
-
[17]
Yi-You Huang , Xiang Luo , Kai Zhang , Yulan Liang , Furong Zhang , Guochao Liao , Shenghong Xie , Pei-Luo Huang , Siyu Hou , Qian Zhou , Yong Zou , Hai-Bin Luo . Structure-based optimization of isoaurostatin as novel PDE4 inhibitors with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(8): 110586-. doi: 10.1016/j.cclet.2024.110586
-
[18]
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
-
[19]
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
-
[20]
Cong-Bin Ji , Ding-Xiong Xie , Mei Chen , Ye-Ying Lan , Bao-Hua Zhang , Ji-Ying Yang , Zheng-Hui Kang , Shu-Jie Chen , Yu-Wei Zhang , Yun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1120)
- HTML views(18)
Login In
DownLoad: