Citation: Theodore E. Wiley, Brenden C. Arruda, Nicholas A. Miller, Michael Lenard, Roseanne J. Sension. Excited electronic states and internal conversion in cyanocobalamin[J]. Chinese Chemical Letters, ;2015, 26(4): 439-443. doi: 10.1016/j.cclet.2015.03.003 shu

Excited electronic states and internal conversion in cyanocobalamin

  • Corresponding author: Roseanne J. Sension, 
  • Received Date: 22 December 2014
    Available Online: 15 January 2015

    Fund Project:

  • Cyanocobalamin (CNCbl) is a paradigm system for the study of excited electronic states and biological cofactors including the B12 vitamers. The photophysics of CNCbl has been thoroughly investigated using both ultrafast spectroscopy and time dependent density functional theory (TD-DFT). Herewe review the spectroscopic and theoretical investigations of CNCbl with emphasis on the nature of S1, the lowest excited electronic state, and extend the spectroscopic measurements to include the ultraviolet region of the spectrum. Ultrafast transient absorption measurements in the visible αβ band region and in the midinfrared led to assignment of the S1 state to a ligand-to-metal charge transfer (LMCT) with lengthened axial bonds and a ~3 kcal/mol barrier for internal conversion to the ground state. The present measurements encompassing the γ band region of the spectrum provide further support for the assignment of the S1 state. The experiments are in good agreement with the results of TD-DFT calculations which confirm the expected lengthening of the axial bonds in S1 and account for the observed barrier for internal conversion back to the ground state.
  • 加载中
    1. [1]

      [1] R. Banerjee, S.W. Ragsdale, The many faces of vitamin B12: catalysis by cobalamin- dependent enzymes, Ann. Rev. Biochem. 72 (2003) 209-247.

    2. [2]

      [2] R.G. Matthews, M. Koutmos, S. Datta, Cobalamin-dependent and cobamidedependent methyltransferases, Curr. Opin. Struct. Biol. 18 (2008) 658-666.

    3. [3]

      [3] M.L. Ludwig, R.G. Matthews, Structure-based perspectives on B12-dependent enzymes, Ann. Rev. Biochem. 66 (1997) 269-313.

    4. [4]

      [4] E.N.G. Marsh, Coenzyme B12 (cobalamin)-dependent enzymes, Essays Biochem. 34 (1999) 139-154.

    5. [5]

      [5] R. Banerjee, Chemistry and Biochemistry of B12, John Wiley and Sons, New York, 1999.

    6. [6]

      [6] S.C. Ke, K. Warncke, Interactions of substrate and product radicals with CoII in cobalamin and with the active site in ethanolamine deaminase, characterized by ESE-EPR and 14N ESEEM spectroscopies, J. Am. Chem. Soc. 121 (1999) 9922-9927.

    7. [7]

      [7] F. Mancia, N.H. Keep, A. Nakagawa, et al., How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 a˚ resolution, Structure 4 (1996) 339-350.

    8. [8]

      [8] C.L. Drennan, S. Huang, J.T. Drummond, R.G. Matthews, M.L. Ludwig, How a protein binds B12: a 3.0 A X-ray structure of B12-binding domains of methionine synthase, Science 266 (1994) 1669-1674.

    9. [9]

      [9] J.A. Peng, K.C. Tang, K. McLoughlin, et al., Ultrafast excited-state dynamics and photolysis in base-off B-12 coenzymes and analogues: absence of the transnitrogenous ligand opens a channel for rapid nonradiative decay, J. Phys. Chem. B 114 (2010) 12398-12405.

    10. [10]

      [10] D. Padovani, T. Labunska, B.A. Palfey, D.P. Ballou, R. Banerjee, Adenosyltransferase tailors and delivers coenzyme B12, Nat. Chem. Biol. 4 (2008) 194-196.

    11. [11]

      [11] T.A. Shell, J.R. Shell, Z.L. Rodgers, D.S. Lawrence, Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as lightcapturing antennas, Angew. Chem. Int. Ed. 53 (2014) 875-878.

    12. [12]

      [12] T.A. Shell, D.S. Lawrence, A new trick (hydroxyl radical generation) for an old vitamin (B12), J. Am. Chem. Soc. 133 (2011) 2148-2150.

    13. [13]

      [13] M. Ruetz, R. Salchner, K. Wurst, S. Fedosov, B. Kra¨ utler, Phenylethynylcobalamin: a light-stable and thermolysis-resistant organometallic vitamin B12 derivative prepared by radical synthesis, Angew. Chem. Int. Ed. 52 (2013) 11406-11409.

    14. [14]

      [14] E. Mutti, M. Ruetz, H. Birn, B. Krautler, E. Nexo, 4-ethylphenyl-cobalamin impairs tissue uptake of vitamin B-12 and causes vitamin B12 deficiency in mice, PLOS ONE 8 (2013) e75312.

    15. [15]

      [15] A. Stickrath, E.C. Carroll, X. Dai, et al., Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate recombination of alkylcobalamins, J. Phys. Chem. A 113 (2009) 8513-8522.

    16. [16]

      [16] D.A. Harris, A.B. Stickrath, E.C. Carroll, R.J. Sension, Influence of environment on the electronic structure of Cob(III) alamins: time-resolved absorption studies of the s1 state spectrum and dynamics, J. Am. Chem. Soc. 129 (2007) 7578-7585.

    17. [17]

      [17] J.J. Shiang, A.G. Cole, R.J. Sension, et al., Ultrafast excited-state dynamics in vitamin B12 and related Cob(III) alamins, J. Am. Chem. Soc. 128 (2006) 801-808.

    18. [18]

      [18] R.J. Sension, D.A. Harris, A. Stickrath, et al., Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase, J. Phys. Chem. B 109 (2005) 18146-18152.

    19. [19]

      [19] R.J. Sension, D.A. Harris, A.G. Cole, Time-resolved spectroscopic studies of B12 coenzymes: a comparison of the influence of solvent on the primary photolysis mechanism and geminate recombination of methyl-, ethyl-, n-propyl-, and 50- deoxyadenosylcobalamin, J. Phys. Chem. B 109 (2005) 21954-21962.

    20. [20]

      [20] R.J. Sension, A.G. Cole, A.D. Harris, et al., Photolysis and recombination of adenosylcobalamin bound to glutamate mutase, J. Am. Chem. Soc. 126 (2004) 1598-1599.

    21. [21]

      [21] A.G. Cole, L.M. Yoder, J.J. Shiang, et al., Time-resolved spectroscopic studies of B12 coenzymes: a comparison of the primary photolysis mechanism in methyl-, ethyl-, n-propyl-, and 50-deoxyadenosylcobalamin, J. Am. Chem. Soc. 124 (2002) 434-441.

    22. [22]

      [22] L.M. Yoder, A.G. Cole, L.A. Walker II, R.J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: influence of solvent on the photolysis of adenosylcobalamin, J. Phys. Chem. B 105 (2001) 12180-12188.

    23. [23]

      [23] J.J. Shiang, L.A. Walker II., N.A. Anderson, A.G. Cole, R.J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: the photolysis of methylcobalamin is wavelength dependent, J. Phys. Chem. B 103 (1999) 10532-10539.

    24. [24]

      [24] L.A. Walker II., J.J. Shiang, N.A. Anderson, S.H. Pullen, R.J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: the photolysis and geminate recombination of adenosylcobalamin, J. Am. Chem. Soc. 120 (1998) 7286-7292.

    25. [25]

      [25] L.A. Walker II., J.T. Jarrett, N.A. Anderson, et al., Time-resolved spectroscopic studies of B12 coenzymes: the identification of a metastable Cob(III)alamin photoproduct in the photolysis of methylcobalamin, J. Am. Chem. Soc. 120 (1998) 3597-3603.

    26. [26]

      [26] A.R. Jones, H.J. Russell, G.M. Greetham, et al., Ultrafast infrared spectral fingerprints of vitamin B12 and related cobalamins, J. Phys. Chem. A 116 (2012) 5586-5594.

    27. [27]

      [27] N. Shafizadeh, L. Poisson, B. Soep, Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase, Chem. Phys. 350 (2008) 2-6.

    28. [28]

      [28] K. Kornobis, N. Kumar, P. Lodowski, et al., Electronic structure of the S1 state in methylcobalamin: Insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations, J. Comp. Chem. 34 (2013) 987-1004.

    29. [29]

      [29] P. Lodowski, M. Jaworska, T. Andruniow, B.D. Garabato, P.M. Kozlowski, Mechanism of Co-C bond photolysis in the base-on form of methylcobalamin, J. Phys. Chem. A 118 (2014) 11718-11734.

    30. [30]

      [30] H. Solheim, K. Kornobis, K. Ruud, P.M. Kozlowski, Electronically excited states of vitamin B12 and methylcobalamin: theoretical analysis of absorption, CD, and MCD data, J. Phys. Chem. B 115 (2011) 737-748.

    31. [31]

      [31] P. Lodowski, M. Jaworska, T. Andruniów, M. Kumar, P.M. Kozlowski, Photodissociation of Co-C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations, J. Phys. Chem. B 113 (2009) 6898-6909.

    32. [32]

      [32] T. Andruniów, M. Jaworska, P. Lodowski, et al., Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of coenzyme B12, J. Chem. Phys. 131 (2009) 105105.

    33. [33]

      [33] T. Andruniów, M. Jaworska, P. Lodowski, et al., Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of methylcobalamin, J. Chem. Phys. 129 (2008) 085101.

    34. [34]

      [34] M. Jaworska, P. Lodowski, T. Andruniów, P.M. Kozlowski, Photolysis of methylcobalamin: identification of the relevant excited states involved in Co-C bond scission, J. Phys. Chem. B 111 (2007) 2419-2422.

    35. [35]

      [35] P. Lodowski, M. Jaworska, T. Andruniów, B.D. Garabato, P.M. Kozlowski, Mechanism of the S1 excited state internal conversion in vitamin B12, Phys. Chem. Chem. Phys. 16 (2014) 18675-18679.

    36. [36]

      [36] M. Kumar, P.M. Kozlowski, Why hydroxocobalamin is photocatalytically active? Chem. Phys. Lett. 543 (2012) 133-136.

    37. [37]

      [37] P. Lodowski, M. Jaworska, K. Kornobis, T. Andruniów, P.M. Kozlowski, Electronic and structural properties of low-lying excited states of vitamin B12, J. Phys. Chem. B 115 (2011) 13304-13319.

    38. [38]

      [38] K. Kornobis, N. Kumar, B.M. Wong, et al., Electronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods, J. Phys. Chem. A 115 (2011) 1280-1292.

    39. [39]

      [39] M.S.A. Hamza, J.M. Pratt, The chemistry of vitamin B12. Part 29. Coordination of imidazoles and 1 2,4-triazole by aquacyanocobinamide, J. Chem. Soc. Dalton Trans. (1994) 1373-1376.

  • 加载中
    1. [1]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    2. [2]

      Xiaokang HouHuanxin MaMengmeng ZhaoChunhua FengShishu Zhu . Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid. Chinese Chemical Letters, 2025, 36(7): 110332-. doi: 10.1016/j.cclet.2024.110332

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    5. [5]

      Dixing NiJiarui QiZhi DengDong DingRui WangWenjie ZhouSisi ZhouYang SunShuai LiZhaoxiang Wang . Voltage design and transport channel optimization of anti-perovskite cathode materials: A density functional theory study. Chinese Chemical Letters, 2025, 36(12): 110683-. doi: 10.1016/j.cclet.2024.110683

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    8. [8]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    9. [9]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    10. [10]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    11. [11]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Hongen CaoXinrui XiaoXu ZhangYiyang ZhangLei Yu . Element Transfer Reaction theory: Scientific connotation and its applications in chemical industry. Chinese Chemical Letters, 2025, 36(9): 110924-. doi: 10.1016/j.cclet.2025.110924

    14. [14]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    15. [15]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    16. [16]

      Yueting MaZhiyan FengYuxin DongZhiyong YanHou WangYan Wu . Harnessing the interfacial sulfur-edge and metal-edge sites in ZnIn2S4/MnS heterojunctions boosts charge transfer for photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110922-. doi: 10.1016/j.cclet.2025.110922

    17. [17]

      Xinxin ZhangZhijian LiangXu ZhangQian GuoYing XieLei WangHonggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935

    18. [18]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    19. [19]

      Doudou LiuWeiwei GuoGuoliang MeiYoupeng DanRong YangChao HuangYanling ZhaiXiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578

    20. [20]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

Metrics
  • PDF Downloads(0)
  • Abstract views(1100)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return