Citation: Ming Wan, Ming Yao, Jun-Yu Gong, Peng Yang, Hua Liu, Ang Li. Synthesis of the tetracyclic core of chlorospermines[J]. Chinese Chemical Letters, ;2015, 26(3): 272-276. doi: 10.1016/j.cclet.2015.01.037 shu

Synthesis of the tetracyclic core of chlorospermines

  • Corresponding author: Hua Liu,  Ang Li, 
  • Received Date: 6 January 2015
    Available Online: 21 January 2015

    Fund Project: Financial support was provided by Ministry of Science & Technology (No. 2013CB836900) (No. 2013CB836900)

  • Chlorospermines A and B are biologically interesting acridone natural products and recently isolated from Glycosmis chlorosperma. We report here a convergent approach to construct the tetracyclic core of the natural products. The two fragments are assembled together through Sonogashira coupling, and a cis-triene intermediate was prepared by using hydrosilylation/desilylation. A 6π-electrocyclization/aromatization sequence served as the key step of the synthesis, which formed the tetrasubstituted arene motif in one pot.
  • 加载中
    1. [1]

      [1] J.P. Michael, Quinoline, quinazoline, and acridone alkaloids, Nat. Prod. Rep. 25 (2008) 166-187.

    2. [2]

      [2] P. Belmont, J. Bosson, T. Godet, M. Tiano, Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med. Chem. 7 (2007) 139-169.

    3. [3]

      [3] M.A. Beniddir, E.L. Borgne, B.I. Iorga, et al., Acridone alkaloids from Glycosmis chlorosperma as DYRK1A inhibitors, J. Nat. Prod. 77 (2014) 1117-1122.

    4. [4]

      [4] P.L. Macdonald, A.V. Robertson, The structure of acronycine, Aust. J. Chem. 19 (1966) 275-281.

    5. [5]

      [5] J. Hlubucek, E. Ritchie, W.C. Taylor, A synthesis of acronycine, Aust. J. Chem. 23 (1970) 1819-1881.

    6. [6]

      [6] D.G. Loughhead, Synthesis of des-N-methylacronycine and acronycine, J. Org. Chem. 55 (1990) 2245-2246.

    7. [7]

      [7] A. Elomri, S. Michel, F. Tillequin, M. Koch, A novel synthesisi of 6-demethoxyacronycine, Heterocycles 34 (1992) 799-806.

    8. [8]

      [8] R.C. Anand, N. Selvapalam, A practical regiospecific approach towards acronycine and related alkaloids, Chem. Commun. (1996) 199-200.

    9. [9]

      [9] I.K. Kostakis, P. Magiatis, N. Pouli, et al., Design, synthesis, and antiproliferative activity of some new pyrazole-fused amino derivatives of the pyranoxanthenone, pyranothioxanthenone, and pyranoacidone ring systems: a new class of cytotoxic agents, J. Med. Chem. 45 (2002) 2599-2609.

    10. [10]

      [10] S.L. MacNeil, B.J. Wilson, V. Snieckus, Anionic N-fries rearrangement of N-carbamoyl diarylamines to anthranilamides. Methodology and application to acridone and pyranoacridone alkaloids, Org. Lett. 8 (2006) 1133-1136.

    11. [11]

      [11] G.S. Hari, Y.R. Lee, X. Wang, W.S. Lyoo, S.H. Kim, New synthetic routes to acronycine, noracronycine, and their analogues, Bull. Korean Chem. Soc. 31 (2010) 2406-2409.

    12. [12]

      [12] K.P.C. Vollhardt, Cobalt-mediated [2 + 2+ 2]-cycloadditions: a maturing synthetic strategy, Angew. Chem. Int. Ed. 23 (1984) 539-644.

    13. [13]

      [13] V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated [2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217.

    14. [14]

      [14] G. Domínguez, J. Pérez-Castells, Recent advances in [2 + 2 + 2] cycloaddition reactions, Chem. Soc. Rev. 40 (2011) 3430-3444.

    15. [15]

      [15] D.L. Boger, Diels-Alder reactions of heterocyclic azadienes: scope and applications, Chem. Rev. 86 (1986) 781-793.

    16. [16]

      [16] A.B. Smith, N.J. Liverton, N.J. Hrib, H. Sivaramakrishnan, K. Winzenberg, Total synthesis of (+)-jatropholones A and B. Exploitation of the high-pressure technique, J. Am. Chem. Soc. 108 (1986) 3040-3048.

    17. [17]

      [17] P.S. Baran, N.Z. Burns, Total synthesis of (±)-haouamine A, J. Am. Chem. Soc. 128 (2006) 3908-3909.

    18. [18]

      [18] Y. Liu, K. Lu, M. Dai, et al., An efficient one-pot asymmetric synthesis of biaryl compounds via Diels-Alder/retro-Diels-Alder cascade reactions, Org. Lett. 9 (2007) 805-808.

    19. [19]

      [19] B.M. O'Keefe, D.M. Mans, D.E. Kaelin Jr., S.F. Martin, Total synthesis of isokidamycin, J. Am. Chem. Soc. 132 (2010) 15528-15530.

    20. [20]

      [20] R.L. Greenaway, C.D. Campbell, O.T. Holton, C.A. Russell, E.A. Anderson, Palladium-catalyzed cascade cyclization of ynamides to azabicycles, Chem. Eur. J. 17 (2011) 14366-14370.

    21. [21]

      [21] S.S. Goh, H. Baars, B. Gockel, E.A. Anderson, Metal-catalyzed syntheses of abridged CDE rings of rubriflordilactones A and B, Org. Lett. 14 (2012) 6278-6281.

    22. [22]

      [22] C.D. Campbell, R.L. Greenaway, O.T. Holton, H.A. Chapman, E.A. Anderson, Palladium-catalyzed cyclization of bromoenynamides to tricyclic azacycles: synthesis of trikentrin-like frameworks, Chem. Commun. 50 (2014) 5187-5189.

    23. [23]

      [23] Z. Lu, M. Yang, P. Chen, X. Xiong, A. Li, Total synthesis of hapalindole-type natural products, Angew. Chem. Int. Ed. 53 (2014) 13840-13844.

    24. [24]

      [24] X. Xiong, D. Zhang, J. Li, et al., Synthesis of indole terpenoid mimics via a functionality-tolerated Eu(fod)3-catalyzed conjugate addition, Chem. Asian J. (2014), http://dx.doi.org/10.1002/asia.201403312.

    25. [25]

      [25] K.C. Nicolaou, N.A. Petasis, R.E. Zipkin, J. Uenishi, The endiandric acid cascade. Electrocyclizations in organic synthesis. 1. Stepwise, stereocontrolled total synthesis of endiandric acids A and B, J. Am. Chem. Soc. 104 (1982) 5555-5557.

    26. [26]

      [26] K.C. Nicolaou, N.A. Petasis, J. Uenishi, R.E. Zipkin, The endiandric acid cascade. Electrocyclizations in organic synthesis. 2. Stepwise, stereocontrolled total synthesis of endiandric acids C-G, J. Am. Chem. Soc. 104 (1982) 5557-5558.

    27. [27]

      [27] K.C. Nicolaou, R.E. Zipkin, N.A. Petasis, The endiandric acid cascade. Electrocyclizations in organic synthesis. 3. "Biomimetic" approach to endiandric acids A-G. Synthesis of precursors, J. Am. Chem. Soc. 104 (1982) 5558-5560.

    28. [28]

      [28] K.C. Nicolaou, N.A. Petasis, R.E. Zipkin, The endiandric acid cascade. Electrocyclizations in organic synthesis. 4. Biomimetic approach to endiandric acids A-G. Total synthesis and thermal studies, J. Am. Chem. Soc. 104 (1982) 5560-5562.

    29. [29]

      [29] C.M. Beaudry, J.P. Malerich, D. Trauner, Biosynthetic and biomimetic electrocyclizations, Chem. Rev. 105 (2005) 4757-4778.

    30. [30]

      [30] K.A. Parker, Y.-H. Lim, The total synthesis of (-)-SNF4435 C and (+)-SNF4435 D, J. Am. Chem. Soc. 126 (2004) 15968-15969.

    31. [31]

      [31] C.M. Beaudry, D. Trauner, Total synthesis of (-)-SNF4435 C and (+)-SNF4435 D, Org. Lett. 7 (2005) 4475-4477.

    32. [32]

      [32] A.K. Miller, D. Trauner, Mining the tetraene manifold: total synthesis of complex pyrones from Placobranchus ocellatus, Angew. Chem. Int. Ed. 44 (2005) 4602-4606.

    33. [33]

      [33] P. Sharma, D.J. Ritson, J. Burnley, J.E. Moses, A synthetic approach to kingianin A based on biosynthetic speculation, Chem. Commun. 47 (2011) 10605-10607.

    34. [34]

      [34] G.A. Barcan, A. Patel, K.N. Houk, O. Kwon, A torquoselective 6p electrocyclization approach to reserpine alkaloids, Org. Lett. 14 (2012) 5388-5391.

    35. [35]

      [35] H.N. Lim, K.A. Parker, Total synthesis of kingianin A, Org. Lett. 15 (2013) 398-401.

    36. [36]

      [36] S.L. Drew, A.L. Lawrence, M.S. Sherburn, Total synthesis of kingianins A, D, and F, Angew. Chem. Int. Ed. 52 (2013) 4221-4224.

    37. [37]

      [37] C. Li, E. Lobkovsky, J.A. Porco, Total synthesis of (±)-torreyanic acid, J. Am. Chem. Soc. 122 (2000) 10484-10485.

    38. [38]

      [38] H.M. Sklenicka, R.P. Hsung, M.J. McLaughlin, L.-l. Wei, A.I. Gerasyuto, W.B. Brennessel, Stereoselective formal [3 + 3] cycloaddition approach to cis-1-azadecalins and synthesis of (-)-4a, 8a-diepi-pumiliotoxin C. Evidence for the first highly stereoselective 6π-electron electrocyclic ring closures of 1-azatrienes, J. Am. Chem. Soc. 124 (2002) 10435-10442.

    39. [39]

      [39] C. Li, R.P. Johnson, J.A. Porco, Total synthesis of the quinone epoxide dimer (+)-torreyanic acid: application of a biomimetic oxidation/electro-cyclization/Diels-Alder dimerization cascade, J. Am. Chem. Soc. 125 (2003) 5095-5106.

    40. [40]

      [40] M. Volgraf, J.P. Lumb, H.C. Brastianos, et al., Biomimetic synthesis of the IDO inhibitors exiguamine A and B, Nat. Chem. Biol. 4 (2008) 535-537.

    41. [41]

      [41] M. Chaumontet, R. Piccardi, O. Baudoin, Synthesis of 3,4-dihydroisoquinolines by a C(sp3)-H activation/electrocyclization strategy: total synthesis of coralydine, Angew. Chem. Int. Ed. 48 (2009) 179-182.

    42. [42]

      [42] D.L. Sloman, J.W. Bacon, J.A. Porco, Total synthesis and absolute stereochemical assignment of kibdelone C, J. Am. Chem. Soc. 133 (2011) 9952-9955.

    43. [43]

      [43] R. Hayashi, Z.X. Ma, R.P. Hsung, A tandem 1,3-H-shift-6p-electrocyclizationcyclic 2-amido-diene intramolecular Diels-Alder cycloaddition approach to BCD-ring of atropurpuran, Org. Lett. 14 (2012) 252-255.

    44. [44]

      [44] E.A. Anderson, E.J. Alexanian, E.J. Sorensen, Synthesis of the furanosteroidal antibiotic viridin, Angew. Chem. Int. Ed. 43 (2004) 1998-2001.

    45. [45]

      [45] K. Ohmori, K. Mori, Y. Ishikawa, H. Tsuruta, S. Kuwahara, N. Harada, K. Suzuki, Concise total synthesis and structure assignment of TAN-1085, Angew. Chem. Int. Ed. 43 (2004) 3167-3171.

    46. [46]

      [46] D.C. Harrowven, D.D. Pascoe, D. Demurtas, H.O. Bourne, Total synthesis of (-)-colombiasin A and (-)-elisapterosin B, Angew. Chem. Int. Ed. 44 (2005) 1221-1222.

    47. [47]

      [47] A. Fürstner, M.M. Domostoj, B. Scheiper, Total synthesis of dictyodendrin B, J. Am. Chem. Soc. 127 (2005) 11620-11621.

    48. [48]

      [48] T.J. Greshock, R.L. Funk, Synthesis of indoles via 6p-electrocyclic ring closures of trienecarbamates, J. Am. Chem. Soc. 128 (2006) 4946-4947.

    49. [49]

      [49] T.J. Greshock, R.L. Funk, An approach to the total synthesis of welwistatin, Org. Lett. 8 (2006) 2643-2645.

    50. [50]

      [50] R.J. Huntley, R.L. Funk, Total syntheses of (±)-cis-trikentrin A and (±)-cis-trikentrin B via electrocyclic ring closures of 2,3-divinylpyrrolines, Org. Lett. 8 (2006) 3403-3406.

    51. [51]

      [51] R.J. Huntley, R.L. Funk, A strategy for the total synthesis of dragmacidin E. Construction of the core ring system, Org. Lett. 8 (2006) 4775-4778.

    52. [52]

      [52] S.T. Staben, J.J. Kennedy-Smith, D. Huang, et al., Gold(I)-catalyzed cyclizations of silyl enol ethers: application to the synthesis of (+)-lycopladine A, Angew. Chem. Int. Ed. 45 (2006) 5991-5994.

    53. [53]

      [53] T. Suzuki, T. Hamura, K. Suzuki, Ring selectivity: successive ring expansion of two benzocyclobutenes for divergent access to angular and linear benzanthraquinones, Angew. Chem. Int. Ed. 47 (2008) 2248-2252.

    54. [54]

      [54] D.L. Sloman, B. Mitasev, S.S. Scully, J.A. Beutler, J.A. Porco, Synthesis and biological evaluation of ABCD ring fragments of the kibdelones, Angew. Chem. Int. Ed. 50 (2011) 2511-2515.

    55. [55]

      [55] Z. Lu, Y. Li, J. Deng, A. Li, Total synthesis of the daphniphyllum alkaloid daphenylline, Nat. Chem. 5 (2013) 679-684.

    56. [56]

      [56] M. Bian, Z. Wang, X. Xiong, et al., Total syntheses of anominine and tubingensin A, J. Am. Chem. Soc. 134 (2012) 8078-8081.

    57. [57]

      [57] Z. Meng, H. Yu, L. Li, et al., Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families, Nat. Commun. 6 (2015) 6096, http://dx.doi.org/10.1038/ncomms7096.

    58. [58]

      [58] J. Li, P. Yang, M. Yao, J. Deng, A. Li, Total synthesis of rubriflordilactone A, J. Am. Chem. Soc. 136 (2014) 16477-16480.

    59. [59]

      [59] M. Yang, J. Li, A. Li, Total synthesis of clostrubin, a potent antibiotic from Clostridium, Nat Commun. 6 (2015), http://dx.doi.org/10.1038/ncomms7445.

    60. [60]

      [60] L. Hill, S.H. Imam, H. McNab, W.J. O'Neill, Regioselective synthesis of quinolin-4-ones by pyrolysis of anilinomethylene derivatives of Meldrum's acid, Synlett (2009) 1847-1850.

    61. [61]

      [61] H. Yu, C. Wan, J. Han, A. Li, A protocol for a-bromination of b-substituted enones, Acta Chim. Sin. 71 (2013) 1488-1491.

    62. [62]

      [62] M. Adachi, H. Yamada, M. Isobe, T. Nishikawa, Total synthesis of polygalolide A, Org. Lett. 13 (2011) 6532-6535.

    63. [63]

      [63] A. Francais, A. Leyva, G. Etxebarria-Jardi, S.V. Ley, Total synthesis of the antiapoptotic agents iso-and bongkrekic acids, Org. Lett. 12 (2010) 340-343.

    64. [64]

      [64] J.L. Speier, J.A. Webster, G.H. Barnes, The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts, J. Am. Chem. Soc. 79 (1957) 974-979.

    65. [65]

      [65] D.A. Rooke, E.M. Ferreira, Platinum-catalyzed hydrosilylations of internal alkynes: harnessing substituent effects to achieve high regioselectivity, Angew. Chem. Int. Ed. 51 (2012) 3225-3230.

    66. [66]

      [66] D.A. Rooke, Z.A. Menard, E.M. Ferreira, An analysis of the influences dictating regioselectivity in platinum-catalyzed hydrosilylations of internal alkynes, Tetrahedron 70 (2014) 4232-4244.

    67. [67]

      [67] A. Fürstner, K. Radkowski, A chemo-and stereoselective reduction of cycloalkynes to (E)-cycloalkenes, Chem. Commun. (2002) 2182-2183.

    68. [68]

      [68] F. Lacombe, K. Radkowski, G. Seidel, A. Fürstner, (E)-Cycloalkenes and (E,E)-cycloalkadienes by ring closing diyne-or enyne-yne metathesis/semi-reduction, Tetrahedron 60 (2004) 7315-7324.

    69. [69]

      [69] A. Fürstner, M. Bonnekessel, J.T. Blank, et al., Total synthesis of myxovirescin A1, Chem. Eur. J. 13 (2007) 8762-8783.

    70. [70]

      [70] Y. Wang, M. Jimenez, A.S. Hansen, et al., Control of olefin geometry in macrocyclic ring-closing metathesis using a removable silyl group, J. Am. Chem. Soc. 133 (2011) 9196-9199.

  • 加载中
    1. [1]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    2. [2]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    3. [3]

      Yingjie WangPeng TangWenchao TuQi GaoCuizhu WangLuying TanLixin ZhaoHongye HanLiefeng MaKouharu OtsukiWeilie XiaoWenli WangJinping LiuYong LiZhajun ZhanWei LiXianli ZhouNing Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955

    4. [4]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    5. [5]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    6. [6]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    7. [7]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    8. [8]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    9. [9]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    10. [10]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    11. [11]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    12. [12]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    15. [15]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    16. [16]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    17. [17]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    18. [18]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

Metrics
  • PDF Downloads(0)
  • Abstract views(578)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return