Citation:
Ming Wan, Ming Yao, Jun-Yu Gong, Peng Yang, Hua Liu, Ang Li. Synthesis of the tetracyclic core of chlorospermines[J]. Chinese Chemical Letters,
;2015, 26(3): 272-276.
doi:
10.1016/j.cclet.2015.01.037
-
Chlorospermines A and B are biologically interesting acridone natural products and recently isolated from Glycosmis chlorosperma. We report here a convergent approach to construct the tetracyclic core of the natural products. The two fragments are assembled together through Sonogashira coupling, and a cis-triene intermediate was prepared by using hydrosilylation/desilylation. A 6π-electrocyclization/aromatization sequence served as the key step of the synthesis, which formed the tetrasubstituted arene motif in one pot.
-
-
-
[1]
[1] J.P. Michael, Quinoline, quinazoline, and acridone alkaloids, Nat. Prod. Rep. 25 (2008) 166-187.
-
[2]
[2] P. Belmont, J. Bosson, T. Godet, M. Tiano, Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med. Chem. 7 (2007) 139-169.
-
[3]
[3] M.A. Beniddir, E.L. Borgne, B.I. Iorga, et al., Acridone alkaloids from Glycosmis chlorosperma as DYRK1A inhibitors, J. Nat. Prod. 77 (2014) 1117-1122.
-
[4]
[4] P.L. Macdonald, A.V. Robertson, The structure of acronycine, Aust. J. Chem. 19 (1966) 275-281.
-
[5]
[5] J. Hlubucek, E. Ritchie, W.C. Taylor, A synthesis of acronycine, Aust. J. Chem. 23 (1970) 1819-1881.
-
[6]
[6] D.G. Loughhead, Synthesis of des-N-methylacronycine and acronycine, J. Org. Chem. 55 (1990) 2245-2246.
-
[7]
[7] A. Elomri, S. Michel, F. Tillequin, M. Koch, A novel synthesisi of 6-demethoxyacronycine, Heterocycles 34 (1992) 799-806.
-
[8]
[8] R.C. Anand, N. Selvapalam, A practical regiospecific approach towards acronycine and related alkaloids, Chem. Commun. (1996) 199-200.
-
[9]
[9] I.K. Kostakis, P. Magiatis, N. Pouli, et al., Design, synthesis, and antiproliferative activity of some new pyrazole-fused amino derivatives of the pyranoxanthenone, pyranothioxanthenone, and pyranoacidone ring systems: a new class of cytotoxic agents, J. Med. Chem. 45 (2002) 2599-2609.
-
[10]
[10] S.L. MacNeil, B.J. Wilson, V. Snieckus, Anionic N-fries rearrangement of N-carbamoyl diarylamines to anthranilamides. Methodology and application to acridone and pyranoacridone alkaloids, Org. Lett. 8 (2006) 1133-1136.
-
[11]
[11] G.S. Hari, Y.R. Lee, X. Wang, W.S. Lyoo, S.H. Kim, New synthetic routes to acronycine, noracronycine, and their analogues, Bull. Korean Chem. Soc. 31 (2010) 2406-2409.
-
[12]
[12] K.P.C. Vollhardt, Cobalt-mediated [2 + 2+ 2]-cycloadditions: a maturing synthetic strategy, Angew. Chem. Int. Ed. 23 (1984) 539-644.
-
[13]
[13] V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated [2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217.
-
[14]
[14] G. Domínguez, J. Pérez-Castells, Recent advances in [2 + 2 + 2] cycloaddition reactions, Chem. Soc. Rev. 40 (2011) 3430-3444.
-
[15]
[15] D.L. Boger, Diels-Alder reactions of heterocyclic azadienes: scope and applications, Chem. Rev. 86 (1986) 781-793.
-
[16]
[16] A.B. Smith, N.J. Liverton, N.J. Hrib, H. Sivaramakrishnan, K. Winzenberg, Total synthesis of (+)-jatropholones A and B. Exploitation of the high-pressure technique, J. Am. Chem. Soc. 108 (1986) 3040-3048.
-
[17]
[17] P.S. Baran, N.Z. Burns, Total synthesis of (±)-haouamine A, J. Am. Chem. Soc. 128 (2006) 3908-3909.
-
[18]
[18] Y. Liu, K. Lu, M. Dai, et al., An efficient one-pot asymmetric synthesis of biaryl compounds via Diels-Alder/retro-Diels-Alder cascade reactions, Org. Lett. 9 (2007) 805-808.
-
[19]
[19] B.M. O'Keefe, D.M. Mans, D.E. Kaelin Jr., S.F. Martin, Total synthesis of isokidamycin, J. Am. Chem. Soc. 132 (2010) 15528-15530.
-
[20]
[20] R.L. Greenaway, C.D. Campbell, O.T. Holton, C.A. Russell, E.A. Anderson, Palladium-catalyzed cascade cyclization of ynamides to azabicycles, Chem. Eur. J. 17 (2011) 14366-14370.
-
[21]
[21] S.S. Goh, H. Baars, B. Gockel, E.A. Anderson, Metal-catalyzed syntheses of abridged CDE rings of rubriflordilactones A and B, Org. Lett. 14 (2012) 6278-6281.
-
[22]
[22] C.D. Campbell, R.L. Greenaway, O.T. Holton, H.A. Chapman, E.A. Anderson, Palladium-catalyzed cyclization of bromoenynamides to tricyclic azacycles: synthesis of trikentrin-like frameworks, Chem. Commun. 50 (2014) 5187-5189.
-
[23]
[23] Z. Lu, M. Yang, P. Chen, X. Xiong, A. Li, Total synthesis of hapalindole-type natural products, Angew. Chem. Int. Ed. 53 (2014) 13840-13844.
-
[24]
[24] X. Xiong, D. Zhang, J. Li, et al., Synthesis of indole terpenoid mimics via a functionality-tolerated Eu(fod)3-catalyzed conjugate addition, Chem. Asian J. (2014), http://dx.doi.org/10.1002/asia.201403312.
-
[25]
[25] K.C. Nicolaou, N.A. Petasis, R.E. Zipkin, J. Uenishi, The endiandric acid cascade. Electrocyclizations in organic synthesis. 1. Stepwise, stereocontrolled total synthesis of endiandric acids A and B, J. Am. Chem. Soc. 104 (1982) 5555-5557.
-
[26]
[26] K.C. Nicolaou, N.A. Petasis, J. Uenishi, R.E. Zipkin, The endiandric acid cascade. Electrocyclizations in organic synthesis. 2. Stepwise, stereocontrolled total synthesis of endiandric acids C-G, J. Am. Chem. Soc. 104 (1982) 5557-5558.
-
[27]
[27] K.C. Nicolaou, R.E. Zipkin, N.A. Petasis, The endiandric acid cascade. Electrocyclizations in organic synthesis. 3. "Biomimetic" approach to endiandric acids A-G. Synthesis of precursors, J. Am. Chem. Soc. 104 (1982) 5558-5560.
-
[28]
[28] K.C. Nicolaou, N.A. Petasis, R.E. Zipkin, The endiandric acid cascade. Electrocyclizations in organic synthesis. 4. Biomimetic approach to endiandric acids A-G. Total synthesis and thermal studies, J. Am. Chem. Soc. 104 (1982) 5560-5562.
-
[29]
[29] C.M. Beaudry, J.P. Malerich, D. Trauner, Biosynthetic and biomimetic electrocyclizations, Chem. Rev. 105 (2005) 4757-4778.
-
[30]
[30] K.A. Parker, Y.-H. Lim, The total synthesis of (-)-SNF4435 C and (+)-SNF4435 D, J. Am. Chem. Soc. 126 (2004) 15968-15969.
-
[31]
[31] C.M. Beaudry, D. Trauner, Total synthesis of (-)-SNF4435 C and (+)-SNF4435 D, Org. Lett. 7 (2005) 4475-4477.
-
[32]
[32] A.K. Miller, D. Trauner, Mining the tetraene manifold: total synthesis of complex pyrones from Placobranchus ocellatus, Angew. Chem. Int. Ed. 44 (2005) 4602-4606.
-
[33]
[33] P. Sharma, D.J. Ritson, J. Burnley, J.E. Moses, A synthetic approach to kingianin A based on biosynthetic speculation, Chem. Commun. 47 (2011) 10605-10607.
-
[34]
[34] G.A. Barcan, A. Patel, K.N. Houk, O. Kwon, A torquoselective 6p electrocyclization approach to reserpine alkaloids, Org. Lett. 14 (2012) 5388-5391.
-
[35]
[35] H.N. Lim, K.A. Parker, Total synthesis of kingianin A, Org. Lett. 15 (2013) 398-401.
-
[36]
[36] S.L. Drew, A.L. Lawrence, M.S. Sherburn, Total synthesis of kingianins A, D, and F, Angew. Chem. Int. Ed. 52 (2013) 4221-4224.
-
[37]
[37] C. Li, E. Lobkovsky, J.A. Porco, Total synthesis of (±)-torreyanic acid, J. Am. Chem. Soc. 122 (2000) 10484-10485.
-
[38]
[38] H.M. Sklenicka, R.P. Hsung, M.J. McLaughlin, L.-l. Wei, A.I. Gerasyuto, W.B. Brennessel, Stereoselective formal [3 + 3] cycloaddition approach to cis-1-azadecalins and synthesis of (-)-4a, 8a-diepi-pumiliotoxin C. Evidence for the first highly stereoselective 6π-electron electrocyclic ring closures of 1-azatrienes, J. Am. Chem. Soc. 124 (2002) 10435-10442.
-
[39]
[39] C. Li, R.P. Johnson, J.A. Porco, Total synthesis of the quinone epoxide dimer (+)-torreyanic acid: application of a biomimetic oxidation/electro-cyclization/Diels-Alder dimerization cascade, J. Am. Chem. Soc. 125 (2003) 5095-5106.
-
[40]
[40] M. Volgraf, J.P. Lumb, H.C. Brastianos, et al., Biomimetic synthesis of the IDO inhibitors exiguamine A and B, Nat. Chem. Biol. 4 (2008) 535-537.
-
[41]
[41] M. Chaumontet, R. Piccardi, O. Baudoin, Synthesis of 3,4-dihydroisoquinolines by a C(sp3)-H activation/electrocyclization strategy: total synthesis of coralydine, Angew. Chem. Int. Ed. 48 (2009) 179-182.
-
[42]
[42] D.L. Sloman, J.W. Bacon, J.A. Porco, Total synthesis and absolute stereochemical assignment of kibdelone C, J. Am. Chem. Soc. 133 (2011) 9952-9955.
-
[43]
[43] R. Hayashi, Z.X. Ma, R.P. Hsung, A tandem 1,3-H-shift-6p-electrocyclizationcyclic 2-amido-diene intramolecular Diels-Alder cycloaddition approach to BCD-ring of atropurpuran, Org. Lett. 14 (2012) 252-255.
-
[44]
[44] E.A. Anderson, E.J. Alexanian, E.J. Sorensen, Synthesis of the furanosteroidal antibiotic viridin, Angew. Chem. Int. Ed. 43 (2004) 1998-2001.
-
[45]
[45] K. Ohmori, K. Mori, Y. Ishikawa, H. Tsuruta, S. Kuwahara, N. Harada, K. Suzuki, Concise total synthesis and structure assignment of TAN-1085, Angew. Chem. Int. Ed. 43 (2004) 3167-3171.
-
[46]
[46] D.C. Harrowven, D.D. Pascoe, D. Demurtas, H.O. Bourne, Total synthesis of (-)-colombiasin A and (-)-elisapterosin B, Angew. Chem. Int. Ed. 44 (2005) 1221-1222.
-
[47]
[47] A. Fürstner, M.M. Domostoj, B. Scheiper, Total synthesis of dictyodendrin B, J. Am. Chem. Soc. 127 (2005) 11620-11621.
-
[48]
[48] T.J. Greshock, R.L. Funk, Synthesis of indoles via 6p-electrocyclic ring closures of trienecarbamates, J. Am. Chem. Soc. 128 (2006) 4946-4947.
-
[49]
[49] T.J. Greshock, R.L. Funk, An approach to the total synthesis of welwistatin, Org. Lett. 8 (2006) 2643-2645.
-
[50]
[50] R.J. Huntley, R.L. Funk, Total syntheses of (±)-cis-trikentrin A and (±)-cis-trikentrin B via electrocyclic ring closures of 2,3-divinylpyrrolines, Org. Lett. 8 (2006) 3403-3406.
-
[51]
[51] R.J. Huntley, R.L. Funk, A strategy for the total synthesis of dragmacidin E. Construction of the core ring system, Org. Lett. 8 (2006) 4775-4778.
-
[52]
[52] S.T. Staben, J.J. Kennedy-Smith, D. Huang, et al., Gold(I)-catalyzed cyclizations of silyl enol ethers: application to the synthesis of (+)-lycopladine A, Angew. Chem. Int. Ed. 45 (2006) 5991-5994.
-
[53]
[53] T. Suzuki, T. Hamura, K. Suzuki, Ring selectivity: successive ring expansion of two benzocyclobutenes for divergent access to angular and linear benzanthraquinones, Angew. Chem. Int. Ed. 47 (2008) 2248-2252.
-
[54]
[54] D.L. Sloman, B. Mitasev, S.S. Scully, J.A. Beutler, J.A. Porco, Synthesis and biological evaluation of ABCD ring fragments of the kibdelones, Angew. Chem. Int. Ed. 50 (2011) 2511-2515.
-
[55]
[55] Z. Lu, Y. Li, J. Deng, A. Li, Total synthesis of the daphniphyllum alkaloid daphenylline, Nat. Chem. 5 (2013) 679-684.
-
[56]
[56] M. Bian, Z. Wang, X. Xiong, et al., Total syntheses of anominine and tubingensin A, J. Am. Chem. Soc. 134 (2012) 8078-8081.
-
[57]
[57] Z. Meng, H. Yu, L. Li, et al., Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families, Nat. Commun. 6 (2015) 6096, http://dx.doi.org/10.1038/ncomms7096.
-
[58]
[58] J. Li, P. Yang, M. Yao, J. Deng, A. Li, Total synthesis of rubriflordilactone A, J. Am. Chem. Soc. 136 (2014) 16477-16480.
-
[59]
[59] M. Yang, J. Li, A. Li, Total synthesis of clostrubin, a potent antibiotic from Clostridium, Nat Commun. 6 (2015), http://dx.doi.org/10.1038/ncomms7445.
-
[60]
[60] L. Hill, S.H. Imam, H. McNab, W.J. O'Neill, Regioselective synthesis of quinolin-4-ones by pyrolysis of anilinomethylene derivatives of Meldrum's acid, Synlett (2009) 1847-1850.
-
[61]
[61] H. Yu, C. Wan, J. Han, A. Li, A protocol for a-bromination of b-substituted enones, Acta Chim. Sin. 71 (2013) 1488-1491.
-
[62]
[62] M. Adachi, H. Yamada, M. Isobe, T. Nishikawa, Total synthesis of polygalolide A, Org. Lett. 13 (2011) 6532-6535.
-
[63]
[63] A. Francais, A. Leyva, G. Etxebarria-Jardi, S.V. Ley, Total synthesis of the antiapoptotic agents iso-and bongkrekic acids, Org. Lett. 12 (2010) 340-343.
-
[64]
[64] J.L. Speier, J.A. Webster, G.H. Barnes, The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts, J. Am. Chem. Soc. 79 (1957) 974-979.
-
[65]
[65] D.A. Rooke, E.M. Ferreira, Platinum-catalyzed hydrosilylations of internal alkynes: harnessing substituent effects to achieve high regioselectivity, Angew. Chem. Int. Ed. 51 (2012) 3225-3230.
-
[66]
[66] D.A. Rooke, Z.A. Menard, E.M. Ferreira, An analysis of the influences dictating regioselectivity in platinum-catalyzed hydrosilylations of internal alkynes, Tetrahedron 70 (2014) 4232-4244.
-
[67]
[67] A. Fürstner, K. Radkowski, A chemo-and stereoselective reduction of cycloalkynes to (E)-cycloalkenes, Chem. Commun. (2002) 2182-2183.
-
[68]
[68] F. Lacombe, K. Radkowski, G. Seidel, A. Fürstner, (E)-Cycloalkenes and (E,E)-cycloalkadienes by ring closing diyne-or enyne-yne metathesis/semi-reduction, Tetrahedron 60 (2004) 7315-7324.
-
[69]
[69] A. Fürstner, M. Bonnekessel, J.T. Blank, et al., Total synthesis of myxovirescin A1, Chem. Eur. J. 13 (2007) 8762-8783.
-
[70]
[70] Y. Wang, M. Jimenez, A.S. Hansen, et al., Control of olefin geometry in macrocyclic ring-closing metathesis using a removable silyl group, J. Am. Chem. Soc. 133 (2011) 9196-9199.
-
[1]
-
-
-
[1]
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
-
[2]
Xiaoliu Liang , Chunliu Huang , Hui Liu , Hu Chen , Jiabao Shou , Hongwei Cheng , Gang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442
-
[3]
Yingjie Wang , Peng Tang , Wenchao Tu , Qi Gao , Cuizhu Wang , Luying Tan , Lixin Zhao , Hongye Han , Liefeng Ma , Kouharu Otsuki , Weilie Xiao , Wenli Wang , Jinping Liu , Yong Li , Zhajun Zhan , Wei Li , Xianli Zhou , Ning Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955
-
[4]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[5]
Deli Chen , Jiawen Li , Xudong Xu , Zhaocui Sun , Yun Yang , Minghui Xu , Hanqiao Liang , Junshan Yang , Hui Meng , Guoxu Ma , Jianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451
-
[6]
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
-
[7]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[8]
Haobo Wang , Fei Wang , Yong Liu , Zhongxiu Liu , Yingjie Miao , Wanhong Zhang , Guangxin Wang , Jiangtao Ji , Qiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589
-
[9]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[10]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[11]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[12]
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
-
[13]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[14]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[15]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[16]
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
-
[17]
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
-
[18]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[19]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[20]
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(577)
- HTML views(26)