Citation: Peng-Fei Li, Ying Han, Chuan-Feng Chen. Synthesis and structures of triptycene-derived Tröger's base molecular clips[J]. Chinese Chemical Letters, ;2015, 26(7): 839-842. doi: 10.1016/j.cclet.2015.01.031 shu

Synthesis and structures of triptycene-derived Tröger's base molecular clips

  • Corresponding author: Chuan-Feng Chen, 
  • Received Date: 2 December 2014
    Available Online: 29 December 2014

    Fund Project: We thank the National Natural Science Foundation of China (Nos. 21332008, 51373180) (Nos. 21332008, 51373180)

  • A series of triptycene-derived Tröger's bases with molecular clip shaped structures have been conveniently and efficiently synthesized by one-pot condensation of corresponding amino-substituted triptycenes with paraformaldehyde in the presence of trifluoroacetic acid, and their structures have been characterized by NMR, MALDI-TOF MS spectra, elemental analyses and single-crystal X-ray diffraction.
  • 加载中
    1. [1]

      [1] (a) F.G. Klärner, B. Kahlert, Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor–substrate complexes, Acc. Chem. Res. 36 (2003) 919–932; (b) M. Hardouin–Lerouge, P. Hudhomme, M. Sallé, Molecular clips and tweezers hosting neutral guests, Chem. Soc. Rev. 40 (2011) 30–43.

    2. [2]

      [2] B. Dolenský, J. Kessler, M. Jakubek, et al., Synthesis and characterisation of a new naphthalene tris-Tröger's base derivative –a chiral molecular clip, Tetrahedron Lett. 54 (2013) 308–311.

    3. [3]

      [3] (a) B. Dolenský, M. Havlík, V. Král, Oligo Tröger's bases-new molecular scaffolds, Chem. Soc. Rev. 41 (2012) 3839–3858; (b) S. Sergeyev, Recent developments in synthetic chemistry, chiral separations, and applications of Tröger's base analogues, Helv. Chim. Acta 92 (2009) 415–444; (c) M. Valík, R.M. Strongin, V. Král, Tröger's base derivatives-new life for old compounds, Supramol. Chem. 17 (2005) 347–367.

    4. [4]

      [4] C.S. Wilcox, L.M. Greer, V. Lynch, Synthesis of chiral molecular clefts. New armatures for biomimetic systems, J. Am. Chem. Soc. 109 (1987) 1865–1867.

    5. [5]

      [5] (a) C.F. Chen, Y.X. Ma, Iptycene Chemistry: From Synthesis to Applications, Springer-Verlag, Berlin, Heidelberg, 2013; (b) C. Zhang, Y. Liu, X.Q. Xiong, et al., Three-dimensional nanographene based on triptycene: synthesis and its application in fluorescence imaging, Org. Lett. 14 (2012) 5912–5915; (c) C. Zhang, L.H. Peng, B. Li, et al., Organic microporous polymer from a hexaphenylbenzene based triptycene monomer: synthesis and its gas storage properties, Polym. Chem. 4 (2013) 3663–3666; (d) C. Zhang, Y. Liu, B. Li, et al., Triptycene-based microporous polymers: synthesis and their gas storage properties, ACS Macro Lett. 1 (2012) 190–193.

    6. [6]

      [6] (a) C.F. Chen, Novel triptycene-derived hosts: synthesis and their applications in supramolecular chemistry, Chem. Commun. 47 (2011) 1674–1688; (b) Y. Han, Z. Meng, Y.X. Ma, C.F. Chen, Iptycene-derived crown ether hosts for molecular recognition and self-assembly, Acc. Chem. Res. 47 (2014) 2026–2040.

    7. [7]

      [7] (a) X.X. Peng, H.Y. Lu, T. Han, C.F. Chen, Synthesis of a novel triptycene-based molecular tweezer and its complexation with paraquat derivatives, Org. Lett. 9 (2007) 895–898; (b) J. Cao, X.Z. Zhu, C.F. Chen, Synthesis, structure, and binding property of pentiptycene-based rigid tweezer-like molecules, J. Org. Chem. 75 (2010) 7420–7423; (c) Y. Jiang, J. Cao, J.M. Zhao, J.F. Xiang, C.F. Chen, Synthesis of a triptycene-derived bisparaphenylene-34-crown-10 and its complexation with both paraquat and cyclobis(paraquat-p-phenylene), J. Org. Chem. 75 (2010) 1767–1770; (d) T. Han, C.F. Chen, A triptycene-based bis(crown ether) host: complexation with both paraquat derivatives and dibenzylammonium salts, Org. Lett. 8 (2006) 1069–1072.

    8. [8]

      [8] C. Zhang, C.F. Chen, Synthesis and structure of 2,6,14- and 2,7,14-trisubstituted triptycene derivatives, J. Org. Chem. 71 (2006) 6626–6629.

    9. [9]

      [9] (a) J.H. Chong, M.J. MacLachlan, Robust non-interpenetrating coordination frameworks from new shape-persistent building blocks, Inorg. Chem. 45 (2006) 1442–1444; (b) J.H. Chong, M.J. MacLachlan, Synthesis and structural investigation of new triptycene-based ligands: en route to shape-persistent dendrimers and macrocycles with large free volume, J. Org. Chem. 72 (2007) 8683–8690.

    10. [10]

      [10] (a) X.Z. Zhu, C.F. Chen, A highly efficient approach to [4]pseudocatenanes by threefold metathesis reactions of a triptycene-based tris[2]pseudorotaxane, J. Am. Chem. Soc. 127 (2005) 13158–13159; (b) Y. Han, Y. Jiang, C.F. Chen, Solid state self-assembly of triptycene-based catechol derivatives by multiple O–H…O hydrogen bonds, Chin. Chem. Lett. 24 (2013) 475–478.

    11. [11]

      [11] J.M. Zhao, H.Y. Lu, J. Cao, Y. Jiang, C.F. Chen, Highly selective synthesis of triptycene O-quinone derivatives and their optical and electrochemical properties, Tetrahedron Lett. 50 (2009) 219–222.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    5. [5]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    6. [6]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    9. [9]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    10. [10]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    13. [13]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    14. [14]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    15. [15]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    18. [18]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    19. [19]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    20. [20]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

Metrics
  • PDF Downloads(0)
  • Abstract views(521)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return