Citation: Li-Bin Zhang, Sheng-Rong Yang, Jin-Qing Wang, Ye Xu, Xiang-Zheng Kong. A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors[J]. Chinese Chemical Letters, ;2015, 26(5): 522-528. doi: 10.1016/j.cclet.2015.01.025 shu

A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors

  • Corresponding author: Sheng-Rong Yang,  Xiang-Zheng Kong, 
  • Received Date: 24 November 2014
    Available Online: 19 January 2015

    Fund Project: This study has been financially supported by National Natural Science Foundation of China (No. 51075384). (No. 51075384)

  • Composites of a nickel based compound incorporated with graphene sheets (NiBC-GS) are prepared by a simple flocculation, using hydrazine hydrate as flocculant and reductant, from a homogeneous intermixture of nickel dichloride and graphene oxide dispersed in N,N-dimethylformamide. Morphology, microstructure and thermal stability of the obtained products were characterized by field-emission scanning electron microscopy, X-ray diffraction and thermal gravimetric analysis. Furthermore, the electrochemical properties of NiBC-GS, as electrodematerials for supercapacitors, were studied by cyclic voltammetry and galvanostatic charge/discharge in 2 mol L-1 KOH solution. It was determined that for NiBC-GS annealed at 250 8C, a high specific capacitance of 2394 F g-1 was achieved at a current density of 1 A g-1, with 78% of the value (i.e., 1864 F g-1) retained after 5000 times of repeated galvanostatic charge/discharge cycling. The high specific capacitance and available charge/discharge stability indicate the synthesized NiBC-GS250 composite is a good candidate as a novel electrode material for supercapacitors.
  • 加载中
    1. [1]

      [1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Rev. 104 (2004) 4245-4269.

    2. [2]

      [2] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.

    3. [3]

      [3] M.X. Liu, L. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization, Chin. Chem. Lett. 25 (2014) 897- 901.

    4. [4]

      [4] Y. Xiao, C. Long, M.T. Zheng, et al., High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors, Chin. Chem. Lett. 25 (2014) 865-868.

    5. [5]

      [5] H.M. Zhang, X.H. Wang, Eco-friendly water-borne conducting polyaniline, Chin. J. Polym. Sci. 31 (2013) 853-869.

    6. [6]

      [6] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

    7. [7]

      [7] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957-961.

    8. [8]

      [8] P. Miró,M. Audiffred, T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43 (2014) 6537-6554.

    9. [9]

      [9] Y. Wang, Z.Q. Shi, Y. Huang, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107.

    10. [10]

      [10] H.M. Sun, L.Y. Cao, L.H. Lu, Bacteria promoted hierarchical carbon materials for high-performance supercapacitor, Energy Environ. Sci. 5 (2012) 6206-6213.

    11. [11]

      [11] J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci. 4 (2011) 4009-4015.

    12. [12]

      [12] C.X. Guo, C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance, Energy Environ. Sci. 4 (2011) 4504-4507.

    13. [13]

      [13] B.H. Kim, K.S. Yang, H.G. Woo, Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors, Mater. Lett. 93 (2013) 190-193.

    14. [14]

      [14] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.

    15. [15]

      [15] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153 (2006) 183-190.

    16. [16]

      [16] F.P. Zhao, Y.Y. Wang, X.N. Xu, et al., Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material, ACS Appl. Mater. Interf. 6 (2014) 11007-11012.

    17. [17]

      [17] L.B. Kong, J.W. Lang, M. Liu, Y.C. Luo, L. Kang, Facile approach to prepare loosepacked cobalt hydroxide nano-flakes materials for electrochemical capacitors, J. Power Sources 194 (2009) 1194-1201.

    18. [18]

      [18] H. Jiang, T. Zhao, C.Z. Li, J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 3818-3823.

    19. [19]

      [19] J. Cheng, G.P. Cao, Y.S. Yang, Characterization of sol-gel-derived NiOx xerogels as supercapacitors, J. Power Sources 159 (2006) 734-741.

    20. [20]

      [20] J. Chang, J. Sun, C.H. Xu, H. Xu, L. Gao, Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors, Nanoscale 4 (2012) 6786-6791.

    21. [21]

      [21] Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors, Langmuir 25 (2009) 9684-9689.

    22. [22]

      [22] H. Chen, S.X. Zhou, L.M. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interf. 6 (2014) 8621-8630.

    23. [23]

      [23] Y. Huang, X.L. Huang, J.S. Lian, et al., Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage, J. Mater. Chem. 22 (2012) 2844-2847.

    24. [24]

      [24] J. Yan, W. Sun, T. Wei, et al., Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets, J. Mater. Chem. 22 (2012) 11494-11502.

    25. [25]

      [25] Z.H. Tang, B.C. Guo, L.Q. Zhang, D.M. Jia, Graphene-rubber nanocomposites, Acta Polym. Sin. (7) (2014) 865-877.

    26. [26]

      [26] X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.

    27. [27]

      [27] H.W. Wang, Z.A. Hu, Y.Q. Chang, et al., Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors, J. Mater. Chem. 21 (2011) 10504-10511.

    28. [28]

      [28] Y. Cao, Q.M. Su, R.C. Che, G.H. Du, B.S. Xu, One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties, Synth. Met. 162 (2012) 968-973.

    29. [29]

      [29] S.B. Yang, X.L. Wu, C.L. Chen, et al., Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials, Chem. Commun. 48 (2012) 2773-2775.

    30. [30]

      [30] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472-7477.

    31. [31]

      [31] L.B. Zhang, J.Q. Wang, H.G. Wang, et al., Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites, Compos., A: Appl. Sci. Manuf. 43 (2012) 1537-1545.

    32. [32]

      [32] L.B. Zhang, J.Q. Wang, S.R. Yang, X.Z. Kong, Preparation and characterization of graphene sheet-polyimide nanocomposite films, Acta Polym. Sin. (2014) 1472- 1478.

    33. [33]

      [33] J.W. Park, E.H. Chae, S.H. Kim, et al., Preparation of fine Ni powders from nickel hydrazine complex, Mater. Chem. Phys. 97 (2006) 371-378.

    34. [34]

      [34] D. Nicholls, R. Swindells, Hydrazine complexes of nickel(II) chloride, J. Inorg. Nucl. Chem. 30 (1968) 2211-2217.

    35. [35]

      [35] C. Furlani, G. Mattogno, A. Monaci, F. Tarli, Ligand field spectra of hydrazine complexes of Ni(II) and the spectrochemical position of hydrazine, Inorg. Chim. Acta 4 (1970) 187-191.

    36. [36]

      [36] G.Y. Huang, S.M. Xu, G. Xu, L.Y. Li, L.F. Zhang, Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors, Trans. Nonferrous Met. Soc. China 19 (2009) 389-393.

    37. [37]

      [37] B. Banerjee, P.K. Biswas, N.R. Chaudhuri, Thermal studies of nickel(II) hydrazine complexes in solid state, Bull. Chem. Soc. Jpn. 56 (1983) 2509- 2517.

    38. [38]

      [38] A. Leineweber, H. Jacobs, Preparation and crystal structures of Ni(NH3)2Cl2 and of two modifications of Ni(NH3)2Br2 and Ni(NH3)2I2, J. Solid State Chem. 152 (2000) 381-387.

    39. [39]

      [39] K.S. Rejitha, S. Mathew, Thermal behaviour of nickel(II) sulphate, nitrate and halide complexes containing ammine and ethylenediamine as ligands, J. Therm. Anal. Calorim. 106 (2011) 267-275.

    40. [40]

      [40] L. Guo, C.M. Liu, R.M. Wang, et al., Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route, J. Am. Chem. Soc. 126 (2004) 4530- 4531.

    41. [41]

      [41] S. Kulaksizoğlu, C. Gökçe, R. Gup, Asymmetric bis(bidentate) azine ligand and transition metal complexes: synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions, J. Chil. Chem. Soc. 57 (2012) 1213-1218.

    42. [42]

      [42] M.S. Wu, K.C. Huang, Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors, Chem. Commun. 47 (2011) 12122-12124.

    43. [43]

      [43] J.W. Lang, L.B. Kong, W.J. Wu, et al., A facile approach to the preparation of loosepacked Ni(OH)2 nanoflake materials for electrochemical capacitors, J. Solid State Electrochem. 13 (2009) 333-340.

  • 加载中
    1. [1]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    2. [2]

      Heng-Su Liu Xi-Ming Zhang Ge-Hao Liang Shisheng Zheng Jian-Feng Li . Investigation of water structure and proton transfer within confined graphene by ab initio molecule dynamics and multiscale data analysis. Chinese Journal of Structural Chemistry, 2025, 44(6): 100596-100596. doi: 10.1016/j.cjsc.2025.100596

    3. [3]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    4. [4]

      Siling ChenYang HuSijia ZhangXuesong LiuZhuqun ShiChuanxi XiongWeiwei WuRuizhi NingQuanling Yang . Enhancing the electroactivity of supercapacitors through nitrogen doping on cellulose-derived carbon materials. Chinese Chemical Letters, 2026, 37(2): 111301-. doi: 10.1016/j.cclet.2025.111301

    5. [5]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    10. [10]

      Hongyu TangDongming LiuJinfu HuangLiang ZhangYang TangBin HuangYanwei LiShunhua XiaoYiling SunRenheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987

    11. [11]

      Le LiShaofeng JiaShi YueYuanyuan YangChao TanConghui WangHengwei QiuYongqiang JiMinghui CaoZige TaiDan Zhang . Vanadium doping inhibit the Jahn−Teller effect of Mn3+ for high-performance aqueous zinc ion battery. Chinese Chemical Letters, 2025, 36(10): 111009-. doi: 10.1016/j.cclet.2025.111009

    12. [12]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    13. [13]

      Jing LiuFei WangHuijie WeiYong LiuXiaoliang ZhaiSifan WenQiaobao Zhang . Fabrication and application of binder-free cathodes in high-performance lithium-chalcogen (S, Se, Te) batteries: A review. Chinese Chemical Letters, 2025, 36(11): 110475-. doi: 10.1016/j.cclet.2024.110475

    14. [14]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    15. [15]

      Jing GuoChunhui LuoPeng LiMao YeZhihua QiaoYubo WuHuiqin HuXubiao LuoLiming YangYulin CaiPengwei LiKai ZhuCheng FuBing YuYueying ChenShichang WangTing WangChongchong QiZirou LiuDongmei HuangZengxi WeiFangxin MaoYi WeiCaining WenChao HanBo WengHan FengJunming HongJing WuYu XiaoGuang LiuLinlin SongRongzheng RenZhenhua WangLong KongHuaifang ShangLihua WangYongzhi ChenChangjie OuHuijun YangXiaoyu LiuJin YiSiwu LiChuang YuYanhui CaoZhong WuYida DengWenbin HuJianjian ZhongXiong ZhangYanwei MaJianmin Ma . Roadmap on sustainable materials and technologies. Chinese Chemical Letters, 2026, 37(2): 112116-. doi: 10.1016/j.cclet.2025.112116

    16. [16]

      Kangyuan XieTianxiang FangQingli ZhuQingyang XuBoyu PengGuangpeng WuChao GaoHaocheng YangLiping ZhuHongqing LiangWeipu ZhuPeng ZhangQiao JinZhengwei MaoKefeng RenYang ZhuHaoke ZhangZiliang WuChao ZhangHanying Li . Key progresses of MOE Key laboratory of macromolecular synthesis and functionalization in 2024. Chinese Chemical Letters, 2026, 37(2): 111990-. doi: 10.1016/j.cclet.2025.111990

    17. [17]

      Qiao WangZiling JiangChuang YuLiping LiGuangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006

    18. [18]

      Ziling JiangChen LiuJie YangXia LiChaochao WeiQiyue LuoZhongkai WuLin LiLiping LiShijie ChengChuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741

    19. [19]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    20. [20]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

Metrics
  • PDF Downloads(0)
  • Abstract views(1260)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return