Citation: Yu-Hai Liu, Jia-Jia Shi, Dan-Qing Gao, Yun-Long Gao, Ran Guo, Xiao-Feng Ling, Shi-Fu Weng, Yi-Zhuang Xu, Isao Noda, Jin-Guang Wu. Interactions between pyridinium and Nd3+[J]. Chinese Chemical Letters, ;2015, 26(2): 182-186. doi: 10.1016/j.cclet.2015.01.014 shu

Interactions between pyridinium and Nd3+

  • Corresponding author: Yi-Zhuang Xu, 
  • Received Date: 31 October 2014
    Available Online: 8 December 2014

    Fund Project: This project is financially supported by the National Natural Science Foundation of China (No. 51373003) (No. 51373003)Beijing Natural Science Foundation (No. 2122059). (No. 2122059)

  • In this paper, 2D asynchronous spectra generated by using the DAOSD approach was utilized to probe interactions between Nd3+ and pyridinium dissolved in aqueous solution. A series of cross peaks in the resultant 2D asynchronous spectrum confirms the occurrence of intermolecular interaction between Nd3+ and pyridinium. However, no coordination occurs between Nd3+ and pyridinium. Interaction between p electron from aromatic system and f electron from lanthanide ions account for the appearance of cross peaks in2Dasynchronous spectra.Because of the interaction, theemissionspectrumof pyridiniumexhibits a significant change when neodymium perchlorate was introduced into the system.
  • 加载中
    1. [1]

      [1] S.X. Liu, C.F. Zhang, E. Proniewicz, et al., Crystalline transition and morphology variation of polyamide 6/CaCl2 composite during the decomplexation process, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 115 (2013) 783-788.

    2. [2]

      [2] J. Liu, S.X. Liu, Y.L. Gao, et al., On the interaction between PVP and europium benzenesulfonate, Spectrosc. Spectral Anal. 33 (2013) 1487-1490.

    3. [3]

      [3] S.X. Liu, C.F. Zhang, Y.H. Liu, et al., Coordination between yttrium ions and amide groups of polyamide 6 and the crystalline behavior of polyamide 6/yttrium composites, J. Mol. Struct. 1021 (2012) 63-69.

    4. [4]

      [4] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.

    5. [5]

      [5] Y.F. Liu, J.C. Su, W.H. Li, J.G. Wu, First hydrotalcite-like sulfonate coordination network incorporating robust cationic layers and flexible interlayer interactions, Inorg. Chem. 44 (2005) 3890-3895.

    6. [6]

      [6] W.X. Sun, X.B. Hu, Y.Z. Xu, et al., Study on the interaction between polyamide and lanthanide ions, Acta Chim. Sinica 58 (2000) 1602-1607.

    7. [7]

      [7] Y.Z. Xu, J.G. Wu, W.X. Sun, et al., A new mechanism of Raman enhancement and its application, Chem. Eur. J. 8 (2002) 5323-5331.

    8. [8]

      [8] Y.Z. Xu, W.X. Sun, W.H. Li, et al., Investigation on the interaction between polyamide and lithium salts, J. Appl. Polym. Sci. 77 (2000) 2685-3690.

    9. [9]

      [9] A.F. Xie, D.L. Tao, Z.B. Zhang, et al., The coordination and phase separation in nylon-copper chloride system, J. Mol. Struct. 613 (2002) 67-71.

    10. [10]

      [10] Y.J. Wu, Y.Z. Xu, D.J. Wang, et al., FT-IR spectroscopic investigation on the interaction between nylon 66 and lithium salts, J. Appl. Polym. Sci. 91 (2004) 2869-2875.

    11. [11]

      [11] J. Qi, K. Huang, X.X. Gao, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy: application in probing lanthanide ions interactions with organic ligands in solution mixtures, J. Mol. Struct. 883-884 (2008) 116-123.

    12. [12]

      [12] I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336.

    13. [13]

      [13] Z.W. Yu, C. Lin, S.Q. Sun, I. Noda, Determination of selective molecular interactions using two-dimensional correlation FT-IR spectroscopy, J. Phys. Chem. A 106 (2002) 6683-6687.

    14. [14]

      [14] J. Qi, H.Z. Li, K. Huang, et al., Orthogonal sample design scheme for two-dimensional synchronous spectroscopy and its application in probing intermolecular interactions, Appl. Spectrosc. 61 (2007) 1359-1365.

    15. [15]

      [15] Y.H. Liu, C.F. Zhang, S.X. Liu, et al., Modified orthogonal sample design scheme to probe intermolecular interactions, J. Mol. Struct. 883-884 (2008) 124-128.

    16. [16]

      [16] J. Chen, C.F. Zhang, H.Z. Li, et al., Patterns of cross peaks in 2D synchronous spectrum generated by using orthogonal sample design scheme, J. Mol. Struct. 883 (2008) 129-136.

    17. [17]

      [17] C.F. Zhang, K. Huang, H.Z. Li, et al., Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions, J. Phys. Chem. A 113 (2009) 12142-12156.

    18. [18]

      [18] X.P. Li, Q.H. Pan, J. Chen, et al., Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands, Appl. Spectrosc. 65 (2011) 901-917.

    19. [19]

      [19] X.P. Li, S.X. Liu, J. Chen, et al., The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach, Vib. Spectrosc. 60 (2012) 212-216.

    20. [20]

      [20] X.P. Li, Q. Bi, S.X.J. Liu, et al., Improvement of the sensitivity of the two-dimensional asynchronous spectroscopy based on the AOSD approach by using a modified reference spectrum, J. Mol. Struct. 1034 (2013) 101-111.

    21. [21]

      [21] J. Chen, Q. Bi, S.X. Liu, et al., Double asynchronous orthogonal sample design scheme for probing intermolecular interactions, J. Phys. Chem. A 116 (2012) 10904-10916.

    22. [22]

      [22] Y.L. Gao, J. Liu, Y.H. Liu, et al., Characterization of the coordination between Nd3+ and ester groups by using double asynchronous orthogonal sample design approach, J. Mol. Struct. 1069 (2014) 205-210.

    23. [23]

      [23] J. Liu, Y.L. Gao, L.R. Zheng, et al., Coordination between cobalt (II) ion and carbonyl group in acetone probed by using DAOSD approach, J. Mol. Struct. 1069 (2014) 217-222.

  • 加载中
    1. [1]

      Xian-Mei ZhaoLi-Wei TangYi LiuYu MaTian YangHao RongLin-Jie WeiJun-Hua LuoZhi-Hua Sun . Enhancing interlayer hydrogen bonds of 2D Ruddlesden-Popper perovskite toward stable polarization-sensitive photodetection. Chinese Chemical Letters, 2025, 36(7): 110092-. doi: 10.1016/j.cclet.2024.110092

    2. [2]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

    3. [3]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    6. [6]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    7. [7]

      Qiong-Hui PengNing-Bo LiJia-Cheng HouCai-Jun HeYa-Xin YangChun-Lin ZhuangLi-Juan OuMei YuanWei-Min He . Nd@g-C3N4 dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2025, 36(12): 111402-. doi: 10.1016/j.cclet.2025.111402

    8. [8]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    9. [9]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    10. [10]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    11. [11]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    12. [12]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    13. [13]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    14. [14]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    15. [15]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    16. [16]

      Yinghui PuYiming NiuTongtong GaoJunnan ChenBingsen Zhang . Ammonia-directed gas-metal-support interaction forming Ni3ZnN for efficient hydrogenation. Chinese Chemical Letters, 2026, 37(1): 111520-. doi: 10.1016/j.cclet.2025.111520

    17. [17]

      Doudou LiuWeiwei GuoGuoliang MeiYoupeng DanRong YangChao HuangYanling ZhaiXiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578

    18. [18]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    19. [19]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    20. [20]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

Metrics
  • PDF Downloads(0)
  • Abstract views(1085)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return