Citation: Jian-Hong Gan, Chang-Hua Xu, Hong-Zhe Zhu, Fang Mao, Fan Yang, Qun Zhou, Su-Qin Sun. Analysis and discrimination of ten different sponges by multi-step infrared spectroscopy[J]. Chinese Chemical Letters, ;2015, 26(2): 215-220. doi: 10.1016/j.cclet.2015.01.012 shu

Analysis and discrimination of ten different sponges by multi-step infrared spectroscopy

  • Corresponding author: Fan Yang,  Su-Qin Sun, 
  • Received Date: 30 September 2014
    Available Online: 22 December 2014

    Fund Project: This research was supported by the National Natural Science Fund for Distinguished Young Scholars of China (No. 81225023) (No. 81225023) the National Natural Science Fund of China (Nos. 41476121, 81302691, 81172978) (Nos. 41476121, 81302691, 81172978) the Innovation Program of Shanghai Municipal Education Commission (No. 14YZ037) (No. 14YZ037)partially supported by Shanghai Subject Chief Scientist (No. 12XD1400200). We are also grateful for the financial support of the National High Technology Research and Development Program of China (863 Projects, No. 2013AA092902). (No. 12XD1400200)

  • In this study, a convenient method using multi-step infrared spectroscopy, including Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was employed to analyze and discriminate ten marine sponges from two classes collected from the Xisha Islands in the South China Sea. Each sponge had an exclusive macroscopic fingerprint. From the IR spectra, it was noted that the main ingredient of calcareous sponges was calciumcarbonate, but that of demosponges was proteins. For sponges from the same genus or having highly similar chemical profile (IR spectral profile), SD-IR and 2DCOS-IR were applied to successfully reveal the tiny differences. It was demonstrated that the multi-step infrared spectroscopy was a feasible and objective approach for marine sponge identification.
  • 加载中
    1. [1]

      [1] J.N.A. Hooper, Coral reef sponges of the Sahul shelf-a case for habitat preservation, Mem. Qld. Mus. 36 (1994) 93-106.

    2. [2]

      [2] I. Hermawan, N.J. de Voogd, J. Tanaka, An acetylenic alkaloid from the calcareous sponge Leucetta sp., Mar. Drugs 9 (2011) 382-386.

    3. [3]

      [3] J.W. Blunt, B.R. Copp, W.P. Hu, et al., Marine natural products, Natl. Prod. Rep. 26 (2009) 170-244.

    4. [4]

      [4] J.B. McClintock, B.J. Baker, Marine Chemical Ecology, CRC Press, New York, 2001.

    5. [5]

      [5] H.X. Ding, L.C. Da, R.C. Yang, et al., First total synthesis of a naturally occurring nucleoside disulfide: 9-(50-deoxy-50-thio-b-D-xylofuranosyl)adenine disulfide, Chin. Chem. Lett. 23 (2012) 996-998.

    6. [6]

      [6] P. Botting, L.A. Muir, S.H. Xiao, X.F. Li, J.P. Lin, Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China, Lethaia 45 (2012) 463-475.

    7. [7]

      [7] S.Q. Sun, Q. Zhou, J.B. Chen, Infrared Spectroscopy for Complex Mixtures: Applications in Food and Traditional Chinese Medicine, Chemical Industry Press, Beijing, 2011.

    8. [8]

      [8] H.Y. Fu, D.C. Huang, T.M. Yang, Y.B. She, H. Zhang, Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transformmid-infrared spectroscopy and near-infrared spectroscopy combined with partial least-squares discriminant analysis, Chin. Chem. Lett. 24 (2013) 639-642.

    9. [9]

      [9] S.Q. Sun, J.B. Chen, Q. Zhou, G.H. Lu, K. Chan, Application of mid-infrared spectroscopy in the quality control of traditional Chinese medicines, Planta Med. 76 (2010) 1987-1996.

    10. [10]

      [10] C.H. Xu, X.G. Jia, R. Xu, et al., Rapid discrimination of Herba Cistanches by multi-step infrared macro-fingerprinting combined with soft independent modeling of class analogy (SIMCA), Spectrochim. Acta A 114 (2013) 421-431.

    11. [11]

      [11] Y. Wang, C.H. Xu, P. Wang, et al., Analysis and identification of different animal horns by a three-stage infrared spectroscopy, Spectrochim. Acta A 83 (2011) 265-270.

    12. [12]

      [12] C.H. Xu, Y. Wang, J.B. Chen, et al., Infrared macro-fingerprint analysis-throughseparation for holographic chemical characterization of herbal medicine, J. Pharm. Biomed. Anal. 74 (2013) 298-307.

    13. [13]

      [13] J. Kong, S.N. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin. 39 (2007) 549-559.

    14. [14]

      [14] J.N.A. Hooper, R.W.M. Van Soest, P. Willenz, Systema Porifera. A Guide to the Classification of Sponges, Springer-Verlag, New York, 2002.

    15. [15]

      [15] J.H. Gan, C.H. Xu, H.B. Yu, et al., Rapid discrimination of china sponges by tri-step infrared spectroscopy: a prelimiary study, J. Mol. Struct. 1069 (2014) 147-151.

    16. [16]

      [16] I. Noda, Two-dimensional infrared spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.

  • 加载中
    1. [1]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    2. [2]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    3. [3]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    4. [4]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Hao LiHanzhi LuLinlin HuXueli ZhangHua ShaoFulun LiYanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342

    7. [7]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    8. [8]

      Lihua Jin Lei Tian Chaozhan Wang Jiawei Liu Quan Bai Yan Li . Teaching Exploration and Practice of the Instrumental Analysis Experiment “Distinguishing Green Plastic Bags by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy”. University Chemistry, 2026, 41(2): 360-365. doi: 10.12461/PKU.DXHX202503043

    9. [9]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    10. [10]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    11. [11]

      Ying ZhangChuang ShenJiaxu ZhangQi ShenFei XuShengheng WangJiuyi HuFaisal SaleemFeng HuangZhimin Luo . Ultrasmall PtCu nanosheets as a broadband phototheranostic agent in near-infrared biowindow. Chinese Chemical Letters, 2025, 36(6): 111059-. doi: 10.1016/j.cclet.2025.111059

    12. [12]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    13. [13]

      Huan YeYing YangLirong JiangTaotao ZheJunchao XuLintao Zeng . An intelligent sensing platform for discrimination of formaldehyde and nitrite in food. Chinese Chemical Letters, 2025, 36(11): 110840-. doi: 10.1016/j.cclet.2025.110840

    14. [14]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    15. [15]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    16. [16]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    17. [17]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    18. [18]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    19. [19]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    20. [20]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

Metrics
  • PDF Downloads(0)
  • Abstract views(1080)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return