Citation: Ying Li, Chun-E. Dong. Effi cient synthesis of fused pyrazoles via simple cyclization of o-alkynylchalcones with hydrazine[J]. Chinese Chemical Letters, ;2015, 26(5): 623-626. doi: 10.1016/j.cclet.2015.01.002 shu

Effi cient synthesis of fused pyrazoles via simple cyclization of o-alkynylchalcones with hydrazine

  • Corresponding author: Chun-E. Dong, 
  • Received Date: 13 November 2014
    Available Online: 4 January 2015

    Fund Project: We are grateful to the Fundamental Research Funds for the Central Universities (No. 2042014kf0248) for support of this research. (No. 2042014kf0248)

  • The synthesis of pyrazole derivatives from o-alkynylchalcones and hydrazine via simple cyclization is described. This greener syntheticmethodology provides a straightforward approach to the synthesis of a variety of pyrazole derivatives under mild reaction condition.
  • 加载中
    1. [1]

      [1] A.R. Katritzky, C.W. Rees, K.T. Potts, Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, Pergamon Press, Oxford, UK, 1984.

    2. [2]

      [2] (a) J. Reedijk, Pyrazoles and imidazoles as ligands: Part I. Some simple metal (II) perchlorates and tetrafluoroborates solvated by neutral pyrazole and imidazole, Recl. Trav. Chim. Pays-Bas 88 (1969) 1451-1470;

    3. [3]

      (b) J. Catalan, F. Fabero, R.M. Claramunt, et al., New ultraviolet stabilizers: 3- and 5-(2'-hydroxyphenyl)pyrazoles, J. Am. Chem. Soc. 114 (1992) 5039-5048.

    4. [4]

      [3] G. Pinna, G. Loriga, P. Lazzari, et al., Tricyclic pyrazoles, Part 6. Benzofuro[3,2- c]pyrazole: a versatile architecture for CB2 selective ligands, Eur. J. Med. Chem. 82 (2014) 281-292.

    5. [5]

      [4] K.O. Mohammed, Y.M. Nissan, Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents, Chem. Biol. Drug Des. 84 (2014) 473-488.

    6. [6]

      [5] H.X. Dai, A.F. Stepan, M.S. Plummer, Y.H. Zhang, J.Q. Yu, Divergent C-H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery, J. Am. Chem. Soc. 133 (2011) 7222-7228.

    7. [7]

      [6] (a) Z. Ozdemir, H.B. Kandilci, B. Gumusel, U. Calis, A.A. Bilgin, Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)- pyrazoline derivatives, Eur. J. Med. Chem. 42 (2007) 373-379;

    8. [8]

      (b) S.T. Heller, S.R. Natarajan, 1,3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles, Org. Lett. 8 (2006) 2675-2678;

    9. [9]

      (c) B.A. Bhat, K.L. Dhar, S.C. Puri, et al., Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents, Bioorg. Med. Chem. Lett. 15 (2005) 3177-3180.

    10. [10]

      [7] (a) Y. Wang, L. Liu, L. Zhang, Combining Zn ion catalysis with homogeneous gold catalysis: an efficient annulation approach to N-protected indoles, Chem. Sci. 4 (2013) 739-746;

    11. [11]

      (b) S. Cacchi, G. Fabrizi, Synthesis and functionalization of indoles through palladium-catalyzed reactions, Chem. Rev. 105 (2005) 2873-2920.

    12. [12]

      [8] (a) Y.F. Wang, K.K. Toh, J.Y. Lee, S. Chiba, Synthesis of isoquinolines from α-aryl vinyl azides and internal alkynes by Rh-Cu bimetallic cooperation, Angew. Chem. Int. Ed. 50 (2011) 5927-5931;

    13. [13]

      (b) P.C. Too, Y.F. Wang, S. Chiba, Rhodium(III)-catalyzed synthesis of isoquinolines from aryl ketone o-acyloxime derivatives and internal alkynes, Org. Lett. 12 (2010) 5688-5691;

    14. [14]

      (c) Q. Huang, J.A. Hunter, R.C. Larock, Synthesis of substituted isoquinolines by electrophilic cyclization of iminoalkynes, J. Org. Chem. 67 (2002) 3437-3444.

    15. [15]

      [9] (a) L. Zhou, Y. Shi, Q. Xiao, et al., CuBr-catalyzed coupling of N-tosylhydrazones and terminal alkynes: synthesis of benzofurans and indoles, Org. Lett. 13 (2011) 968-971;

    16. [16]

      (b) I. Nakamura, Y. Mizushima, Y. Yamamoto, Synthesis of 2,3-disubstituted benzofurans by platinum-olefin-catalyzed carboalkoxylation of o-alkynylphenyl acetals, J. Am. Chem. Soc. 127 (2005) 15022-15023.

    17. [17]

      [10] (a) T. Yao, R.C. Larock, Synthesis of isocoumarins and α-pyrones via electrophilic cyclization, J. Org. Chem. 68 (2003) 5936-5942;

    18. [18]

      (b) R.K. Chinnagolla, M. Jeganmohan, Regioselective synthesis of isocoumarins by ruthenium-catalyzed aerobic oxidative cyclization, Chem. Commun. 48 (2012) 2030-2032.

    19. [19]

      [11] X. Xu, P.Y. Zavalij, W. Hu, M.P. Doyle, Vinylogous reactivity of enol diazoacetates with donor-acceptor substituted hydrazones, synthesis of substituted pyrazole derivatives, J. Org. Chem. 78 (2013) 1583-1588.

    20. [20]

      [12] X. Pan, Y. Luo, J. Wu, Route to pyrazolo[5,1-a]isoquinolines via a copper-catalyzed tandem reaction of 2-alkynylbromobenzene with pyrazole, J. Org. Chem. 78 (2013) 5756-5760.

    21. [21]

      [13] B. Chen, C.Zhu,Y.Tang, S.Ma,Copper-mediatedpyrazole synthesis from2,3-allenoates or 2-alkynoates, amines and nitriles, Chem. Commun. 50 (2014) 7677-7679.

    22. [22]

      [14] X. Zhang, J. Kang, P. Niu, et al., I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis di,tri, and tetrasubstituted pyrazoles from α,ß unsaturated aldehydes/ketones and hydrazines, J. Org. Chem. 79 (2014) 10170-10178.

    23. [23]

      [15] R.R. Merchant, D.M. Allwood, D.C. Blakemore, S.V. Ley, Regioselective preparation of saturated spirocyclic and ring-expanded fused pyrazoles, J. Org. Chem. 79 (2014) 8800-8811.

    24. [24]

      [16] (a) C. Dong, L. Xie, X. Mou, Y. Zhong, W. Su, Facile synthesis of 1,3,4-benzotriazepines and 1-arylamide-1H-indazoles via palladium-catalyzed cyclization of aryl isocyanates and aryl hydrazones under microwave irradiation, Org. Biomol. Chem. 8 (2010) 4827-4830;

    25. [25]

      (b) C. Dong, Z. Liao, X. Xu, H. Zhou, A new pathway for phthalazine derivatives via metal-free cyclization of ortho-alkynylphenyl ketones and hydrazine, J. Heterocycl. Chem. 51 (2014) 1282-1286.

    26. [26]

      [17] J. Qiao, B. Liu, Z. Liao, One-pot to fused pyrazoles by a double cyclization of oalkynylaldehydes with ketones and hydrazine under metal-free condition, Tetrahedron 70 (2014) 3782-3787.

    27. [27]

      [18] S.K. Pawar, C.D. Wang, S. Bhunia, A.M. Jadhav, R.S. Liu, Gold-catalyzed formal cycloaddition of 2-ethynylbenzyl ethers with organic oxides and α-diazoesters, Angew. Chem. Int. Ed. 52 (2013) 7559-7563.

    28. [28]

      [19] X. Li, L. Li, Y. Tang, et al., Chemoselective conjugate reduction of α,β-unsaturated ketones catalyzed by rhodium amido complexes in aqueous media, J. Org. Chem. 75 (2010) 2981-2988.

    29. [29]

      [20] A. Martínez, M. Fernández, J.C. Estévez, R.J. Estévez, L. Castedo, Studies on the chemistry of 2-(2-oxo-3-phenylpropyl)-benzaldehydes: novel total synthesis of 3-phenylnaphthalen-2-ols and 2-hydroxy-3-phenyl-1,4-naphthoquinones, Tetrahedron 61 (2005) 485-492.

  • 加载中
    1. [1]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    6. [6]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    7. [7]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    8. [8]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    9. [9]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    10. [10]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    11. [11]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    12. [12]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    13. [13]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    14. [14]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    15. [15]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    16. [16]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(0)
  • Abstract views(555)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return