Citation: Hong-Yan Lu, Jia-Rong Li, De-Li Yang, Qi Zhang, Da-Xin Shi. A novel synthesis of nitroform by the nitrolysis of cucurbituril[J]. Chinese Chemical Letters, ;2015, 26(3): 365-368. doi: 10.1016/j.cclet.2014.12.019 shu

A novel synthesis of nitroform by the nitrolysis of cucurbituril

  • Corresponding author: Da-Xin Shi, 
  • Received Date: 28 September 2014
    Available Online: 3 December 2014

  • Cucurbituril has a high symmetry and rigid structure. When cucurbit[6]uril (CB[6]) was nitrolyzed with the mixed solution of acetic anhydride in fuming nitric acid, nitroform (NF) was generated. NF also can be obtained by the nitration of both CB[5,7,8]. This nitration procedure provides a lower risk, inexpensive, new preparation of nitroform, and the reaction condition of this new method is very mild.
  • 加载中
    1. [1]

      [1] H. Shechter, H. Cates Jr., Addition reactions of trinitromethane and a,b-unsaturated ethers, J. Org. Chem. 26 (1961) 51-53.

    2. [2]

      [2] H. Feuer, W.A. Swarts, Chemistry of trinitromethane. IV. Preparation of N-nitro-Ntrinitroethylamino alcohols, J. Org. Chem. 27 (1962) 1455-1457.

    3. [3]

      [3] I.V. Ovchinnikov, A.S. Kulikov, M.A. Epishina, N.N. Makhova, V.A. Tartakovsky, Synthesis of N-trinitroethyl derivatives of linear and heterocyclic nitrogen-containing compounds, Russ. Chem. Bull. Int. Ed. 54 (2005) 1346-1349.

    4. [4]

      [4] E.L. Metelkina, T.A. Novikova, 2-Nitroguanidine derivatives. Synthesis and structure of 1-(2,2,2-trinitroethylamino)-and 1-(2,2-dinitroethylamino)-2-nitroguanidines, Russ. J. Org. Chem. 38 (2002) 1378-1379.

    5. [5]

      [5] T.M. Klapötke, B. Krumm, M. Scherr, G. Spieß, F.X. Steemann, Facile synthesis and crystal structure of 1,1,1,3-tetranitro-3-azabutane, Z. Anorg. Allg. Chem. 8 (2008) l244-l1246.

    6. [6]

      [6] H.F.R. Schöer, W.H.M. Welland-Veltmans, J. Louwers, et al., Overview of the development of hydrazinium nitroformate, J. Propuls. Power 18 (2000) 131-137.

    7. [7]

      [7] H.F.R. Schöer, W.H.M. Welland-Veltmans, J. Louwers, et al., Overview of the development of hydrazinium nitroformate-based propellants, J. Propuls. Power 18 (2002) 138-145.

    8. [8]

      [8] (a) M. Göbel, T.M. Klapötke, P.Z. Mayer, Crystal structures of the potassium and silver salts of nitroform, Anorg. Allg. Chem. 632 (2006) 1043-1050; (b) M. Göbel, T.M. Klapötke, Potassium-, ammonium-, hydrazinium-, guanidinium-, aminoguanidinium-, diaminoguanidinium-, triaminoguanidinium-and melaminiumnitroformate-synthesis, characterization and energetic properties, Anorg. Allg. Chem. 633 (2007) 1006-1017; (c) J. Zhang, T.L. Zhang, J.G. Zhang, et al., Synthesis, crystal structure and thermal decomposition character of [Zn(CHZ)3][C(NO2)3]2·(H2O)2 (CHZ = carbohydrazide), Struct. Chem. 19 (2008) 321-328; (d) Y.G. Huang, H.X. Gao, B. Twamley, J.M. Shreeve, Synthesis and characterization of new energetic nitroformate salts, Eur. J. Inorg. Chem. 14 (2007) 2025-2030.

    9. [9]

      [9] (a) P. Liang, Tetranitromethane, Org. Synth. 21 (1941) 105-107; (b) D.E. Welch, Process for Producing Nitroform, US 3491160, 1970; (c) A. Langlet, V.L. Nikolaj, U. Wellmar, P. Goede, Formation of nitroform in the nitration of gem-dinitro compounds, Propellants Explos. Pyrotech. 29 (2004) 344-348.

    10. [10]

      [10] R. Behrend, E. Meyer, F. Rusche, Ueber condensationsproducte aus glycoluril und formaldehyd, Liebigs Ann. Chem. 339 (1905) 1-37.

    11. [11]

      [11] (a) J. Kim, I.S. Jung, K. Kim, et al., New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8), J. Am. Chem. Soc. 122 (2000) 540-541; (b) A.I. Day, A.P. Arnold, R.J. Blanch, B. Snushall, Controlling factors in the synthesis of cucurbituril and its homologues, J. Org. Chem. 66 (2001) 8094-8100; (c) A.I. Day, R.J. Blanch, A.P. Arnold, et al., A cucurbituril-based gyroscane: a new supramolecular form, Angew. Chem. Int. Ed. 41 (2002) 275-277; (d) S. Liu, P.Y. Zavalij, L. Isaacs, Cucurbit[10]uril, J. Am. Chem. Soc. 127 (2005) 16798-16799; (e) X.J. Cheng, L.L. Liang, Z. Tao, et al., Twisted cucurbit[14]uril, Angew. Chem. Int. Ed. 52 (2013) 7252-7255; (f) L. Isaacs, S.K. Park, S. Liu, et al., The inverted cucurbit[n]uril family, J. Am. Chem. Soc. 127 (2005) 18000-18001.

    12. [12]

      [12] V.D. Uzunova, C. Cullinane, K. Brix, W.M. Nau, A.I. Day, Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study, Org. Biomol. Chem. 9 (2010) 2037-2042.

    13. [13]

      [13] Y.H. Ko, E. Kim, I. Hwang, K. Kim, Supramolecular assemblies built with host-stabilized charge-transfer interactions, Chem. Commun. 13 (2007) 1305-1315.

    14. [14]

      [14] (a) E.A. Appel, F. Biedermann, O.A. Scherman, et al., Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril, J. Am. Chem. Soc. 132 (2010) 14251-14260; (b) F. Sakai, Z.W. Ji, J.H. Liu, G.S. Chen, M. Jiang, A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly, Chin. Chem. Lett. 24 (2013) 568-572; (c) H. Chen, H. Yang, W.C. Xu, W.B. Tan, A fluorescent guest used to determinate the effective content of CB[8] and to further detect methyl viologen, Chin. Chem. Lett. 24 (2013) 857-860.

    15. [15]

      [15] G. Ghale, V. Ramalingam, A.R. Urbach, W.M. Nau, Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays, J. Am. Chem. Soc. 19 (2011) 7528-7535.

    16. [16]

      [16] J.M. Chinai, A.B. Taylor, L.M. Ryno, et al., Molecular recognition of insulin by a synthetic receptor, J. Am. Chem. Soc. 23 (2011) 8810-8813.

    17. [17]

      [17] (a) F. Meng, Modified Cucurbituril-Cyclopentyl Substituted Cucurbituril Synthesis and Separation, M.S. thesis, Guizhou University, 2006; (b) Q. Bi, Y.P. Hu, Q. Yang, C.L. Ma, D.L. Li, A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid, Chin. J. Org. Chem. 27 (2007) 880-884.

  • 加载中
    1. [1]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    2. [2]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    3. [3]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    4. [4]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    5. [5]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

Metrics
  • PDF Downloads(0)
  • Abstract views(549)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return