Citation:
Yang Liu, Zhong-Zhi Yang, Dong-Xia Zhao. Rationalization of regioselectivity of electrophilic substitution reaction for cyclic compounds in terms of Dpb values[J]. Chinese Chemical Letters,
;2015, 26(5): 553-556.
doi:
10.1016/j.cclet.2014.12.013
-
Accepted theories predict that substitution reactions are controlled by the electronic nature of the attacked site for electrophilic aromatic substitution. Here it is shown that in addition the bond strength of the broken bond may also influence the regioselectivity of the substitution reaction, and that the Dpb is a good indicator of the strength of a chemical bond. The Dpb denotes the depth of the potential acting on one electron in amolecule at the bond center (bc). In this letter, the values of Dpb along the C-H and N-H bonds have been investigated, and it is demonstrated that for aromatic compounds, the regioselectivity of the electrophilic substitution can well be rationalized in terms of Dpb values.
-
Keywords:
- Dpb,
- Substitution reaction,
- Regioselectivity,
- Bond strength
-
-
-
[1]
[1] M.N. Hopkinson, C. Richter, M. Schedler, et al., An overview of N-heterocyclic carbenes, Nature 510 (2014) 485-496.
-
[2]
[2] P. Stoks, A.W. Schwartz, Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation, Geochim. Cosmochim. Acta 4 (1981) 563-569.
-
[3]
[3] M. Jiang, Y.M. Li, G.W. Gu, Study on toxicity of nitrogenous heterocyclic compounds to aquatic organisms, Acta Sci. Circumst. 25 (2005) 1253-1258.
-
[4]
[4] E. Robert, J. Maleczka, Copper puts arenes in a hard position, Science 323 (2009) 1572-1573.
-
[5]
[5] M. Tobisu, N. Chatan, Remote control by steric effects, Science 343 (2014) 850-851.
-
[6]
[6] W. Langenaeker, K. Demel, P. Geerlings, Quantum-chemical study of the Fukui function as a reactivity index. Part 2: Electrophilic substitution on mono-substituted benzenes, J. Mol. Struct. (THEOCHEM) 234 (1991) 329-342.
-
[7]
[7] L. Meneses, W. Tiznado, R. Contreras, et al., A proposal for a new local hardness as selectivity index, Chem. Phys. Lett. 383 (2004) 181-187.
-
[8]
[8] K. Higasi, H. Baba, A. Rembaum, Quantum Organic Chemistry, John Wiley & Sons, Inc., New York, 1965.
-
[9]
[9] H.T. Wang, N. Weng, S.C. Zhang, et al., Identification of petroleum aromatic fraction by comprehensive two-dimensional gas chromatography with timeof- flight mass spectrometry, Chin. Sci. Bull. 19 (2010) 2039-2045.
-
[10]
[10] R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York, 1900 (preface).
-
[11]
[11] Z.Z. Xu, D.X. Zhao, Z.Z. Yang, Prediction on molecular reactivity of enzymatic catalysis by the generalized reactivity descriptor, Chin. Sci. Bull. 30 (2012) 2787- 2793.
-
[12]
[12] K. Godula, D. Sames, C-H bond functionalization in complex organic synthesis, Science 312 (2006) 67-72.
-
[13]
[13] Y.C. Ma, J. Liang, D.M. Zhao, et al., Condensed Fukui function predicts innate C-H radical functionalization sites on multi-nitrogen containing fused arenes, RSC Adv. 4 (2014) 17262-17264.
-
[14]
[14] K.L.M. Drew, J. Reynisson, The impact of carbon-hydrogen bond dissociation energies on the prediction of the cytochrome P450 mediated major metabolic site of drug-like compounds, Eur. J. Med. Chem. 56 (2012) 48-55.
-
[15]
[15] L. Zhang, L. Deng, C-H bond amination by iron-imido/nitrene species, Chin. Sci. Bull. 19 (2012) 2352-2360.
-
[16]
[16] Y.R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press, Boca Raton, 2002.
-
[17]
[17] Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.
-
[18]
[18] M.J. Li, L. Liu, Y. Fu, et al., Significant effects of phosphorylation on relative stabilities of DNA and RNA sugar radicals: remarkably high susceptibility of H- 2’ abstraction in RNA, J. Phys. Chem. B 110 (2006) 13582-13589.
-
[19]
[19] M.J. Li, L. Liu, Y. Fu, et al., Development of an ONIOM-G3B3 method to accurately predict C-H and N-H bond dissociation enthalpies of ribonucleosides and deoxyribonucleosides, J. Phys. Chem. B 109 (2005) 13818-13826.
-
[20]
[20] D.X. Zhao, Z.Z. Yang, Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM-MO diagram, J. Comput. Chem. 13 (2014) 965-977.
-
[21]
[21] D.X. Zhao, Z.Z. Yang, Theoretical exploration of the potential and force acting on one electron with a molecule, J. Phys. Chem. A 118 (2014) 9045-9057.
-
[22]
[22] X. Du, D.X. Zhao, Z.Z. Yang, Quick estimation of the Dpb for predicting the strength of chemical bond in situ, Chin. Chem. Lett. 24 (2013) 912-916.
-
[23]
[23] Z.Z. Yang, L.D. Gong, D.X. Zhao, The relations of bond length and force constant with the potential acting on an electron in a molecule, J. Phys. Chem. A 109 (2005) 10121-10128.
-
[24]
[24] X. Du, D.X. Zhao, Z.Z. Yang, Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond, Chem. Phys. 412 (2013) 84-91.
-
[25]
[25] X. Du, D.X. Zhao, Z.Z. Yang, An approximate approach to calculate the potential acting on an electron in a molecule and construct the molecular face, Comput. Theor. Chem. 1019 (2013) 61-70.
-
[26]
[26] G. Berthier, R. Bonaccorsi, E. Scrocco, et al., The electrostatic molecular potential for imidazole, pyrazole, oxazole and isoxazole, Theor. Chim. Acta (Berl.) 26 (1972) 101-105.
-
[27]
[27] X.F. Qin, F. Wang, H.S. Wu, Density functional studies of the stepwise substitution of pyrrole, furan, and thiophene with BCO, J. Mol. Model. 19 (2013) 2309-2315.
-
[28]
[28] G. Marino, Quantitative aspect of electrophilic substitution in furan, thiophene, pyrrole, and other five-membered heteroaromatic systems (review), Inst. Org. Chem. 5 (1973) 579-589.
-
[29]
[29] A.A. Mohammad, T. Mahdiyeh, Reaction of arylglyoxals with pyrrole or indole in aqueous media: facile synthesis of heteroaryl α-acyloins, J. Iran Chem. Soc. 11 (2014) 963-968.
-
[30]
[30] X.F. Qin, F. Wang, H.S. Wu, Density functional studies of the stepwise substitution of pyridine, pyridazine, pyrimidine, pyrazine, and 1,3,5-triazine with BCO, J. Mol. Model. 20 (2014) 2079-2085.
-
[31]
[31] E.R. Davidson, MELD Program Description in MOTECC, ESCOM, New York, 1990.
-
[1]
-
-
-
[1]
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494
-
[2]
Chen-Chang Cui , Shao-Qing Shi , Lu-Yao Wang , Feng Lin , Man-Su Tu , Wen-Juan Hao , Bo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541
-
[3]
Kai Zhou , Ao Sun , Yuchao Wang , Hang Dong , Chenkai Bai , Yidian Mo , Xuyang Ding , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Semisynthesis of rare chondroitin sulfate B and T oligosaccharides. Chinese Chemical Letters, 2025, 36(9): 110783-. doi: 10.1016/j.cclet.2024.110783
-
[4]
Zhihua Wang , Xiang-Zhao Zhu , Xinglei He , Chen-Xu Gong , Wang-Fu Liang , Wenfeng Wang , Yuqi Lin , Ke-Yin Ye . Deoxygenative hydrohalogenation of propargyl alcohols: Regio- and stereoselective synthesis of unsaturated distal dihalides. Chinese Chemical Letters, 2025, 36(12): 111067-. doi: 10.1016/j.cclet.2025.111067
-
[5]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[6]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[7]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[8]
Guo Yang , Kai Li , Hanshi Qu , Jianbing Zhu , Chunyu Ru , Meiling Xiao , Wei Xing , Changpeng Liu . Tailoring OH* adsorption strength on Ni/NbOx for boosting alkaline hydrogen oxidation reaction via oxygen vacancy. Chinese Chemical Letters, 2025, 36(7): 110150-. doi: 10.1016/j.cclet.2024.110150
-
[9]
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
-
[10]
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
-
[11]
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
-
[12]
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
-
[13]
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2023.100212
-
[14]
Bingbing Dong , Junmin Zhang , Xiang-Yu Ye , Xuan Huang , Yonggui Robin Chi . Catalytic construction of P-stereogenic center via phosphorus-centered nucleophilic substitution. Chinese Chemical Letters, 2025, 36(9): 111052-. doi: 10.1016/j.cclet.2025.111052
-
[15]
Xufeng LIU , Shaojie WANG , Peihua ZHAO . Ligand substitution of diiron hexacarbonyl complex with aminodiphosphine to prepare diiron aminophosphine complexes relevant to [FeFe]-hydrogenases. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1851-1858. doi: 10.11862/CJIC.20250131
-
[16]
Hongzhi Zhang , Hong Li , Asif Ali Haider , Junpeng Li , Zhi Xie , Hongming Jiang , Conglin Liu , Rui Wang , Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509
-
[17]
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
-
[18]
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663
-
[19]
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
-
[20]
Shan-Shan Li , Juan Luo , Shu-Nuo Liang , Dan-Na Chen , Li-Ning Chen , Cheng-Xue Pan , Peng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1081)
- HTML views(14)
Login In
DownLoad: