Citation: Hong Kan, Wen-Yue Jiang, Ru Ding, Zhong-Ying Liu, Zi-Feng Pi, Zhi-Qiang Liu. Studies of the intestinal absorption of the alkaloids in the Wu-tou decoction combined with different incompatible medicinal herbs in a Caco-2 cell culture system using UPLC-MS/MS[J]. Chinese Chemical Letters, ;2015, 26(5): 590-594. doi: 10.1016/j.cclet.2014.12.008 shu

Studies of the intestinal absorption of the alkaloids in the Wu-tou decoction combined with different incompatible medicinal herbs in a Caco-2 cell culture system using UPLC-MS/MS

  • Corresponding author: Zhong-Ying Liu,  Zi-Feng Pi, 
  • Received Date: 10 September 2014
    Available Online: 1 December 2014

    Fund Project: This work was supported by the National Natural Sciences Foundation of China (No. 81274046) (No. 81274046)National Basic Research Program of China ("973 Program") (Nos. 2011CB505300, 2011CB505305). ("973 Program")

  • In this study, seven alkaloids were detected in Wu-tou decoction using ultra performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MSn). The aim of this study was to investigate the effect of Fritillariae Cirrhosae Bulbus, Fritillariae Thunbergii Bulbus, Pinelliae Rhizoma in different ratios with Wu-tou decoction (2:1, 1:1, 1:2) by measuring the therapeutic effects in Wu-tou decoction of main seven alkaloids including benzoylaconitine (BA), benzoylmesaconitine (BM), benzoylhypaconitine (BH), hypaconitine (HA), fuziline (FU), niaolin (NE) and deoxyaconitine (DA). The permeability of aconitum alkaloids extract through a Caco-2 cell monolayer was analyzed in the absence and presence of Fritillariae Cirrhosae Bulbus, Fritillariae Thunbergii Bulbus, and Pinelliae Rhizoma, respectively. The results showed that Pinelliae Rhizoma could reduce the absorption of the alkaloids and increase the excretion of the alkaloids, which would attenuate the therapeutic effects of Wu-tou decoction. Therefore, Pinelliae Rhizoma is an incompatible herb of Wu-tou decoction because of the inhibition of the absorption of alkaloids in the intestine. And that Fritillariae Cirrhosae Bulbus and Fritillariae Thunbergii Bulbus showed the effects to improve the permeability of the alkaloids in Wu-tou decoction. These effects of these two herbs were similar, but the former was stronger than the latter, which most likely is due to the fact that the compositions of these two traditional Chinese medicines are similar. The in vitro data suggests that the compounds such as fritillary presented in alkaloids in the formula maybe improve the therapeutic function caused by the increased bioavailability of alkaloids in intestine.
  • 加载中
    1. [1]

      [1] S.Z. Chen, Effect of Wu Tou Decoction on Rheumatoid Arthritis and its Possible Mechanism, (Master’s thesis), Guangzhou University of Traditional Chinese Medicine, Guangzhou, 2006.

    2. [2]

      [2] P.J. Wang, X.G. Shi, Z. Ge, X.D. Peng, Z.S. Huang, Effects of aconite decoction on peripheral blood T lymphocytes of adjuvant arthritis rat, Pharm. Clin. Chin. Mater. 23 (2007) 9-10.

    3. [3]

      [3] Y.Q. Sun, Effect and Mechanism of Aconite Decoction on Rheumatoid Arthritis, (Master’s thesis), China Academy of Chinese Medical Sciences, Beijing, 2012.

    4. [4]

      [4] Y. Qi, S.Z. Li, Z.F. Pi, et al., Metabonomic study of Wu-tou decoction in adjuvantinduced arthritis rat using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, J. Chromatogr. B 953-954 (2014) 11-19.

    5. [5]

      [5] L. Wang, G.B. Zhou, P. Liu, et al., Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 4826-4831.

    6. [6]

      [6] J.A. Duan, S.L. Su, X.S. Fan, et al., Interactions of seven emotions and the opposite/mutual inhibition/phase fear mode and mechanism of action and compatibility taboo based on traditional Chinese medicine drug, World Sci. Technol./Mod. Tradit. Chin. Med. Mater. Med. 14 (2012) 1547-1552.

    7. [7]

      [7] C. Wang, Y.G. Wang, Q.D. Liang, W.Q. Rang, Y. Gao, Analysis of chemical composition in the combination of monkshood and pinellia by UPLC/QTOFMS with multivariate statistical analysis, Acta Pharm. Sin. 45 (2010) 1301-1306.

    8. [8]

      [8] C. Wang, Y.G. Wang, Q.D. Liang, et al., Analysis of chemical composition in combination of Aconitum and Fritillaria by UPLC/Q-TOFMS with multivariate statistical analysis, Acta Chim. Sin. 69 (2011) 1920-1928.

    9. [9]

      [9] S.Y. Yee, In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man - fact or myth, Pharm. Res. 14 (1997) 763-766.

    10. [10]

      [10] L. Ye, X.S. Yang, Z. Yang, et al., The role of efflux transporters on the transport of highly toxic aconitine, mesaconitine, hypaconitine, and their hydrolysates, as determined in cultured Caco-2 and transfected MDCKII cells, Toxicol. Lett. 216 (2013) 86-99.

    11. [11]

      [11] N. Li, R. Tsao, Z.G. Sui, et al., Intestinal transport of pure diester-type alkaloids from an aconite extract across the Caco-2 cell monolayer model, Planta Med. 78 (2012) 692-697.

    12. [12]

      [12] N.M. Akhir, L.S. Chua, F.A.A. Majid, M.R. Sarmidi, Cytotoxicity of aqueous and ethanolic extracts of Ficus deltoidea on human ovarian carcinoma cell line, Br. J. Med. Med. Res. 1 (2011) 397-409.

    13. [13]

      [13] W. Wei, Studies on chemical constituents and bio-activities of degradation products of aconitines, (Ph.D. thesis), Jilin University, Changchun, 2011.

    14. [14]

      [14] H.B. Zhu, Studies on Quality Control and Bioactivity Evaluation Methods of Radix aconiti Using Mass Spectrometry, (Ph.D. thesis), University of Chinese Academy of Sciences, Changchun, 2014.

    15. [15]

      [15] K. Fang, Z.H. Ling, G.H. Li, S.T. Shao, Protective effect of hypaconitine on rats’ cardiac muscle cell apoptosis induced by H2O2, Chin. J. Tradit. Med. Sci. Technol. 17 (2010) 315-317.

    16. [16]

      [16] L. Xiong, C. Peng, X.F. Xie, et al., Alkaloids isolated from the lateral root of Aconitum carmichaelii, J. Mol. 17 (2012) 9939-9946.

    17. [17]

      [17] D.H. Xu, F.R. Song, H.F. Zhao, et al., Research of active components in Renshensili recipe, China J. Tradit. Chin. Med. Pharm. 17 (2002) 406-408.

    18. [18]

      [18] X.W. Yang, The Alkaloids, Chemical Industry Press, Beijing, 2005, pp. 357-358.

    19. [19]

      [19] J.Z. Wang, G.Y. Han, Studies on alkaloids isolated from Jiangyou Fu Zi (Aconitum carmichaeli Debx), Acta Pharm. Sin. 20 (1985) 71-73.

    20. [20]

      [20] D.J. Song, M.W. Lu, H.Q. Li, et al., Anti-inflammatory, analgesic and antipyretic effects of deoxyacontine, Chin. Pharm. Bull. 3 (1987) 157-161.

    21. [21]

      [21] K.W. Hu, H.X. Zheng, J. Qi, et al., Empirical studies of peimine on reversing multidrug resistance of leukemia cells, Chin. J. Hematol. 20 (1999) 650-651.

    22. [22]

      [22] J.W. Ma, H. Kan, Y.H. Ma, et al., Qualitative and quantitative analysis of drug interactions: Fritillary mediating the transport of alkaloids in Caco-2 cells by P-glycoprotein, Chem. Res. Chin. Univ. 30 (2014) 731-737.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    3. [3]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    4. [4]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    5. [5]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    6. [6]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    7. [7]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    8. [8]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    9. [9]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    10. [10]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    11. [11]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    12. [12]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    13. [13]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    14. [14]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    15. [15]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    16. [16]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    17. [17]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    18. [18]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    19. [19]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    20. [20]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

Metrics
  • PDF Downloads(0)
  • Abstract views(800)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return