Citation: Meng-Yan Liu, Shi-Bin Hong, Wei Zhang, Wei Deng. Expedient copper-catalyzed borylation reactions using amino acids as ligands[J]. Chinese Chemical Letters, ;2015, 26(3): 373-376. doi: 10.1016/j.cclet.2014.12.004 shu

Expedient copper-catalyzed borylation reactions using amino acids as ligands

  • Corresponding author: Wei Deng, 
  • Received Date: 1 September 2014
    Available Online: 24 November 2014

    Fund Project: We gratefully acknowledge financial support from the Eastern Scholar, Shanghai Pujiang Program, Key Subject of Shanghai Municipal Education Commission, Natural Science Foundation of Shanghai (No. 12ZR1410500) (No. 12ZR1410500)

  • Amino acids were found to be as good ligands for copper-catalyzed borylation reactions of primary and secondary alkyl halides, and the B2pin2 acted as bi-boron source for borylation. The high reaction efficiency and mild conditions make the new catalyst system a useful alternative to the recently developed methods for the preparation of alkylboronic esters.
  • 加载中
    1. [1]

      [1] T.C. Atack, R.M. Lecker, A.P. Cook, Iron-catalyzed borylation of alkyl electrophiles, J. Am. Chem. Soc. 136 (2014) 9521-9523.

    2. [2]

      [2] (a) P.J. Unsworth, D. Leonori, V.K. Aggarwal, Stereocontrolled synthesis of 1,5-stereogenic centers through three-carbon homologation of boronic esters, Angew. Chem. Int. Ed. 53 (2014) 9846-9850; (b) K.L. Billingsley, T.E. Barder, S.L. Buchwald, Palladium-catalyzed borylation of aryl chlorides: scope, applications, and computational studies, Angew. Chem. 119 (2007) 5455-5459; (c) M.A. Larsen, J.F. Hartwig, Iridium-catalyzed C-H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism, J. Am. Chem. Soc. 136 (2014) 4287-4299; (d) C.W. Liskey, J.F. Hartwig, Iridium-catalyzed C-H borylation of cyclopropanes, J. Am. Chem. Soc. 135 (2013) 3375-3378; (e) L.S. Zhang, G.H. Chen, X. Wang, et al., Direct borylation of primary C-H bonds in functionalized molecules by palladium catalysis, Angew. Chem. 126 (2014) 3980-3984; (f) J. Yu, L. Zhang, G.B. Yan, Metal-free, visible light-induced borylation of aryldiazonium salts: a simple and green synthetic route to arylboronates, Adv. Synth. Catal. 354 (2012) 2625-2628; (g) C.T. Yang, Z.Q. Zhang, Y.C. Liu, L. Liu, Copper-catalyzed cross-coupling reaction of organoboron compounds with primary alkyl halides and pseudohalides, Angew. Chem. Int. Ed. 50 (2011) 3904-3907; (h) G.B. Yan, Y.B. Jiang, C.X. Kuang, et al., Nano-Fe2O3-catalyzed direct borylation of arenes, Chem. Commun. 46 (2010) 3170-3172.

    3. [3]

      [3] For selected work on the copper-catalyzed reactions, see: (a) X. Zhang, H. Yi, Z.X. Liao, et al., Copper-catalysed direct radical alkenylation of alkyl bromides, Org. Biomol. Chem. 12 (2014) 6790-6793; (b) X.Y. Li, B.J. Li, J.S. You, J.B. Lan, Copper-catalysed oxidative C-H/N-H crosscoupling between formamides and amides through chelation-assisted N-H activation, Org. Biomol. Chem. 11 (2013) 1925-1928; (c) C.T. Yang, Z.Q. Zhang, J. Liang, et al., Copper-catalyzed cross-coupling of nonactivated secondary alkyl halides and tosylates with secondary alkyl Grignard reagents, J. Am. Chem. Soc. 134 (2012) 11124-11127.

    4. [4]

      [4] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95 (1995) 2457-2483.

    5. [5]

      [5] C.T. Yang, Z.Q. Zhang, H. Tajuddin, et al., Alkylboronic esters from copper-catalyzed borylation of primary and secondary alkyl halides and pseudohalides, Angew. Chem. Int. Ed. 51 (2012) 528-532.

    6. [6]

      [6] (a) W. Deng, Y.F. Wang, Y. Zou, L. Liu, Q.X. Guo, Amino acid-mediated Goldberg reactions between amides andaryl iodides, Tetrahedron Lett.45 (2004) 2311-2315; (b) W. Deng, Y. Zou, Y.F. Wang, L. Liu, Q.X. Guo, CuI-catalyzed coupling reactions of aryl iodides and bromides with thiols promoted by amino acid ligands, Synlett (2004) 1254-1258; (c) W. Deng, L. Liu, C. Zhang, M. Liu, Q.X. Guo, Copper-catalyzed cross-coupling of sulfonamides with aryl iodides and bromides facilitated by amino acid ligands, Tetrahedron Lett. 46 (2005) 7295-7298; (d) X. Cui, Z. Li, C.Z. Tao, et al., N,N-dimethyl-b-alanine as an inexpensive and efficient ligand for palladium-catalyzed Heck reaction, Org. Lett. 8 (2006) 2467-2470; (e) X. Cui, J. Li, Z.P. Zhang, et al., Pd(quinoline-8-carboxylate)2 as a low-priced, phosphine-free catalyst for Heck and Suzuki reactions, J. Org. Chem. 72 (2007) 9342-9345.

    7. [7]

      [7] C. Kleeberg, Z.Y. Lin, T.B. Marder, A facile route to aryl boronates: room-temperature, copper-catalyzed borylation of aryl halides with alkoxy diboron reagents, Angew. Chem. 121 (2009) 5454-5458.

    8. [8]

      [8] For selected work on amino acids and their derivatives as ligands in synthetic organic chemistry, see: (a) D.W. Ma, Q. Cai, Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles, Acc. Chem. Res. 41 (2008) 1450-1460; (b) D.W. Ma, Q. Cai, H. Zhang, Mild method for Ullmann coupling reaction of amines and aryl halides, Org. Lett. 5 (2003) 2453-2455; (c) J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation, J. Am. Chem. Soc. 133 (2011) 11080-11083; (d) S. Gladiali, E. Alberico, Asymmetric transfer hydrogenation: chiral ligands and applications, Chem. Soc. Rev. 35 (2006) 226-236; (e) C.T. Yang, Y. Fu, Y.B. Huang, et al., Room-temperature copper-catalyzed carbon-nitrogen coupling of aryl iodides and bromides promoted by organic ionic bases, Angew. Chem. Int. Ed. 48 (2009) 7398-7401.

    9. [9]

      [9] For selected work on boryllithium, see: (a) Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, Chemistry of boryllithium: synthesis, structure, and reactivity, J. Am. Chem. Soc. 130 (2008) 16069-16079; (b) P. Jaramillo, P. Pérez, P. Fuentealba, Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potentia, J. Phys. Chem. A 113 (2009) 6812-6817; (c) K. Nozaki, Y. Aramaki, M. Yamashita, S.H. Ueng, M.M. Curran, Boryltrihydroborate: synthesis, structure, and reactivity as a reductant in ionic, organometallic, and radical reactions, J. Am. Chem. Soc. 132 (2010) 11449-11451.

    10. [10]

      [10] A. Boneta, V. Lilloa, J. Ramíreza, M.M. Requejob, E. Fernández, The selective catalytic formation of b-boryl aldehydes through a base-free approach, Org. Biomol. Chem. 7 (2009) 1533-1535.

  • 加载中
    1. [1]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    2. [2]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    3. [3]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    4. [4]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    5. [5]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    6. [6]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    7. [7]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    15. [15]

      Wenhao WangSiyuan PengZhengwei HuangXin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134

    16. [16]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    17. [17]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    18. [18]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return