Citation: Kui Gao, Xu-Heng Jiang, Dao-Pan Hu, Shu-Juan Bian, Meng Wang, Yong Chen. Impact of an ionic surfactant on the ion transfer behaviors at meso-liquid/liquid interface arrays[J]. Chinese Chemical Letters, ;2015, 26(3): 285-288. doi: 10.1016/j.cclet.2014.12.003 shu

Impact of an ionic surfactant on the ion transfer behaviors at meso-liquid/liquid interface arrays

  • Corresponding author: Yong Chen, 
  • Received Date: 1 September 2014
    Available Online: 2 November 2014

    Fund Project: This work was supported by the National Science Foundation of China (No. 21005049) (No. 21005049)the Natural Science Foundation of Shanghai, China (No. 14ZR1440900). (No. 14ZR1440900)

  • The influence of ionic surfactants, cetyltrimethylammonium bromide (CTAB), self-assembled within silica-nanochannels of a hybrid mesoporous silica membrane (HMSM) on simple ion transfer (IT) behaviors at the meso-water/1,2-dichloroethane (W/DCE) interface arrays supported by such a HMSM was investigated by voltammetry for the first time. Significantly, it is found that the CTAB in HMSM can dramatically enhance the peak-current responses corresponding to ITs of some anions and even lower their Gibbs transfer energies from W to DCE, which could be ascribed to an anion-exchange process between anions and the bromide of CTAB associated with partial ion-dehydration induced by the CTAB. This work will provide a new strategy to study anion transfer processes and improve the electroanalytical performance for anion detection at the liquid/liquid interface.
  • 加载中
    1. [1]

      [1] S.J. Liu, Q. Li, Y.H. Shao, Electrochemistry at micro-and nanoscopic liquid/liquid interfaces, Chem. Soc. Rev. 40 (2011) 2236-2253.

    2. [2]

      [2] M.J. Stephenson, A.J. King, S.M. Holmes, R.A.W. Dryfe, Size selective and volume exclusion effects on ion transfer at the silicalite modified liquid-liquid interface, J. Phys. Chem. B 109 (2005) 19377-19384.

    3. [3]

      [3] X.Q. Lu, T.X. Wang, X.B. Zhou, et al., Investigation of ion transport traversing the "ion channels" by scanning electrochemical microscopy (SECM), J. Phys. Chem. C 115 (2011) 4800-4805.

    4. [4]

      [4] H.J. Lee, H.H. Girault, Amperometric ion detector for ion chromatography, Anal. Chem. 70 (1998) 4280-4285.

    5. [5]

      [5] M.M. Hossain, S.H. Lee, H.H. Girault, et al., Voltammetric studies of hexachromic anion transfer reactions across micro-water/polyvinylchloride-2-nitrophenyloctylether gel interfaces for sensing applications, Electrochim. Acta 82 (2012) 12-18.

    6. [6]

      [6] E.A. de Eulate, D.W.M. Arrigan, Adsorptive stripping voltammetry of hen-eggwhite-lysozyme via adsorption-desorption at an array of liquid-liquid microinterfaces, Anal. Chem. 84 (2012) 2505-2511.

    7. [7]

      [7] S. O'Sullivan, D.W.M. Arrigan, Impact of a surfactant on the electroactivity of proteins at an aqueous-organogel microinterface array, Anal. Chem. 85 (2013) 1389-1394.

    8. [8]

      [8] S.J. Bian, H.Q. Wu, X.H. Jiang, Y.F. Long, Y. Chen, Syntheses and applications of hybrid mesoporous silica membranes, Prog. Chem. 26 (2014) 1352-1360.

    9. [9]

      [9] Y. Chen, A. Yamaguchi, T. Atou, K. Morita, N. Teramae, Template synthesis of arrays of one-dimensional gold nanowires standing on a carbon film, Chem. Lett. 35 (2006) 1352-1353.

    10. [10]

      [10] A. Keilbach, J. Moses, R. Köhn, M. Döblinger, T. Bein, Electrodeposition of copper and silver nanowires in hierarchical mesoporous silica/anodic alumina nanostructures, Chem. Mater. 22 (2010) 5430-5436.

    11. [11]

      [11] S.J. Bian, K. Gao, H.J. Shen, et al., Organic/inorganic hybrid mesoporous silica membrane rapidly synthesized by a microwave-assisted method and its application in enzyme adsorption and electrocatalysis, J. Mater. Chem. B 1 (2013) 3267-3276.

    12. [12]

      [12] A. Yamaguchi, J. Watanabe, M.M. Mahmoud, et al., Extraction mechanisms of charged organic dye molecules into silica-surfactant nanochannels in a porous alumina membrane, Anal. Chim. Acta 556 (2006) 157-163.

    13. [13]

      [13] A. Yamaguchi, F. Uejo, T. Yoda, et al., Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane, Nat. Mater. 3 (2004) 337-341.

    14. [14]

      [14] Y. Chen, L.Wu, J.Y. Zhu, et al., An organic/inorganic hybrid mesoporous silica membrane: preparation and characterization, J. Porous Mater. 18 (2011) 251-258.

    15. [15]

      [15] Y. Chen, H.Q. Wu, S.W. Gan, Y.H. Wang, X.L. Sun, A hybrid mesoporous membrane synthesized by microwave-assistance: preparation and characterization, J. Membr. Sci. 403-404 (2012) 94-100.

    16. [16]

      [16] Y. Chen, S.J. Bian, K. Gao, et al., Studies on the meso-sized selectivity of a novel organic/inorganic hybrid mesoporous silica membrane, J. Membr. Sci. 457 (2014) 9-18.

    17. [17]

      [17] L. Huang, Y. Chen, S.J. Bian, et al., Composite PET membrane with nanostructured Ag/AgTCNQ Schottky junctions: electrochemical nanofabrication and chargetransfer properties, Chem. Eur. J. 20 (2014) 724-728.

    18. [18]

      [18] A. Yamaguchi, M.M. Mekawy, Y. Chen, et al., Diffusion of metal complexes inside of silica-surfactant nanochannels within a porous alumina membrane, J. Phys. Chem. B 112 (2008) 2024-2030.

    19. [19]

      [19] T. Osakai, Y. Yuguchi, E. Gohara, H. Katano, Direct label-free electrochemical detection of proteins using the polarized oil/water interface, Langmuir 26 (2010) 11530-11537.

    20. [20]

      [20] J. Strutwolf, J.A. Manzanares, D.E. Williams, Effect of self-assembled surfactant structures on ion transport across the liquid/liquid interface, Electrochem. Commun. 1 (1999) 139-144.

    21. [21]

      [21] M.Y. Vagin, E.V. Malyh, N.I. Larionova, A.A. Karyakim, Spontaneous and facilitated micelles formation at liquid/liquid interface: towards amperometric detection of redox inactive proteins, Electrochem. Commun. 5 (2003) 329-333.

    22. [22]

      [22] X.H. Liu, C.W. Dong, K. Zhang, et al., Effect of SDBS on interfacial electron transfer at the liquid/liquid interface by thin layer method, Chin. Chem. Lett. 20 (2009) 1115-1118.

    23. [23]

      [23] T. Kasahara, N. Nishi, M. Yamamoto, T. Kakiuchi, Electrochemical instability in the transfer of cationic surfactant across the 1,2-dichloroethane/water interface, Langmuir 20 (2004) 875-881.

    24. [24]

      [24] R.F. Cui, Q. Li, D.E. Gross, et al., Anion transfer at a micro-water/1,2-dichloroethane interface facilitated by b-octafluoro-meso-octamethylcalix[4]pyrrole, J. Am. Chem. Soc. 130 (2008) 14364-14365.

  • 加载中
    1. [1]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    2. [2]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    3. [3]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    4. [4]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    8. [8]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    9. [9]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    10. [10]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    11. [11]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    12. [12]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    13. [13]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    14. [14]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    15. [15]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    16. [16]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    17. [17]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    18. [18]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    19. [19]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    20. [20]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

Metrics
  • PDF Downloads(0)
  • Abstract views(621)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return