Citation: Yan Li, Dong-Li Li, Jin-Cheng Liu. Optical and gas sensing properties of mesoporous hollow ZnO microspheres fabricated via a solvothermal method[J]. Chinese Chemical Letters, ;2015, 26(3): 304-308. doi: 10.1016/j.cclet.2014.12.002 shu

Optical and gas sensing properties of mesoporous hollow ZnO microspheres fabricated via a solvothermal method

  • Corresponding author: Yan Li, 
  • Received Date: 19 September 2014
    Available Online: 2 November 2014

    Fund Project: and the Significant Preresearch Funds of Civil Aviation University of China (No. 3122013P001). (No. 61079010)

  • Mesoporous, hollow ZnO microspheres were synthesized via a hydrothermal method, using glycerol and zinc acetate as the starting materials. XRD and FESEM analysis showed that the surface morphology of the spheres with a Wurtzite structure could be reasonably adjusted by varying the weight ratio (Rw) of Zn(CH3COO)2 2H2O:H2O:C3H8O3. The responses of the gas sensor based on the spheres to 100 ppm ethanol and 100 ppm acetone are 18.9 and 10.4, respectively. The response and recovery times of the sensor to ethanol and acetone are 2 s and 3 s, 3 s and 5 s, respectively. The hollow spheres show an intense UV emission at 392 nm and a broad blue-green emission at 488 nm. Interestingly, a light trapping phenomenon is revealed by UV emission and scattering measurements on the microspheres, which can be attributed to the mesoporous shell and hollow structure of the microsphere.
  • 加载中
    1. [1]

      [1] P.T. Zhao, T. Huang, K.X. Huang, Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes, J. Phys. Chem. C 111 (2007) 12890-12897.

    2. [2]

      [2] J. Zhang, S.R. Wang, Y. Wang, et al., ZnO hollow spheres: preparation, characterization, and gas sensing properties, Sens. Actuators B: Chem. 139 (2009) 411-417.

    3. [3]

      [3] K. Watanabe, T. Miyao, K. Higashiyama, H. Yamashita, M. Watanabe, High temperature water-gas shift reaction over hollow Ni-Fe-Al oxide nano-composite catalysts prepared by the solution-spray plasma technique, Catal. Commun. 10 (2009) 1952-1955.

    4. [4]

      [4] B.Q. Lu, Y.J. Zhu, G.F. Cheng, Y.J. Ruan, Synthesis and application in drug delivery of hollow-core-double-shell magnetic iron oxide/silica/calcium silicate nanocomposites, Mater. Lett. 104 (2013) 53-56.

    5. [5]

      [5] J. Li, Y. Qin, C. Jin, et al., Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible-light reflection and absorption bands, Nanoscale 5 (2013) 5009-5016.

    6. [6]

      [6] G.H. Wu, A. Milkhailovsky, H.A. Khant, et al., Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells, J. Am. Chem. Soc. 130 (2008) 8175-8177.

    7. [7]

      [7] S.R.A. Raza, Y.T. Lee, Y.G. Chang, et al., Photoelectric probing of the interfacial trap density-of-states in ZnO nanowire field-effect transistors, Phys. Chem. Chem. Phys. 15 (2013) 2660-2664.

    8. [8]

      [8] C.X. He, B.X. Lei, Y.F. Wang, et al., Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells, Chem. Eur. J. 16 (2010) 8757-8761.

    9. [9]

      [9] H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Self-assembled nanostructured ZnO hollow spheres with UVA luminescence, Adv. Appl. Ceram. 108 (2009) 73-77.

    10. [10]

      [10] Y.L. Chen, C.E. Zhang, C. Deng, et al., Preparation of ZnO/GO composite material with highly photocatalytic performance via an improved two-step method, Chin. Chem. Lett. 24 (2013) 518-520.

    11. [11]

      [11] D. Barreca, D. Bekermann, E. Comini, et al., 1D ZnO nano-assemblies by plasma-CVD as chemical sensors for flammable and toxic gases, Sens. Actuators B: Chem. 149 (2010) 1-7.

    12. [12]

      [12] G.Q. Yang, X.P. Zou, X.M. Meng, et al., Large-scale synthesize ZnO micro/nano rods fabricated from aqueous solutions at low temperature, Adv. Mater. Res. 123-125 (2010) 715-718.

    13. [13]

      [13] D.L. Guo, L.H. Tan, Z.P. Wei, H.Y. Chen, T. Wu, Density-controlled synthesis of uniform ZnO nanowires: wide-range tunability and growth regime transition, Small 9 (2013) 2069-2075.

    14. [14]

      [14] W.J. Liu, X.Q. Meng, Y. Zheng, W. Xia, Synthesis and photoluminescence properties of ZnO nanorods and nanotubes, Appl. Surf. Sci. 257 (2010) 677-679.

    15. [15]

      [15] J.B. Lian, Z.M. Ding, F.L. Kwong, D.H.L. Ng, Template-free hydrothermal synthesis of hexagonal ZnO micro-cups and micro-rings assembled by nanoparticles, CrystEngComm 13 (2011) 4820-4822.

    16. [16]

      [16] S.H. Wei, Y. Zhang, M.H. Zhou, Toluene sensing properties of SnO2-ZnO hollow nanofibers fabricated from single capillary electrospinning (vol. 151, p. 895, 2011), Solid State Commun. 152 (2012) 329.

    17. [17]

      [17] Z.Y. Zhang, X.H. Li, C.H. Wang, et al., ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors, J. Phys. Chem. C 113 (2009) 19397-19403.

    18. [18]

      [18] Z.R. Shen, J.G. Wang, P.C. Sun, D.T. Ding, T.H. Chen, Fabrication of lanthanide oxide microspheres and hollow spheres by thermolysis of pre-molding lanthanide coordination compounds, Chem. Commun. 13 (2009) 1742-1744.

    19. [19]

      [19] H.M. Zhang, C. Xu, P.K. Sheng, et al., Synthesis of ZnO hollow spheres through a bacterial template method and their gas sensing properties, Sens. Actuators B: Chem. 181 (2013) 99-103.

    20. [20]

      [20] Y. Tian, J.C. Li, H. Xiong, J.N. Dai, Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property, Appl. Surf. Sci. 258 (2012) 8431-8438.

    21. [21]

      [21] J.H. Wang, N. Shi, Y. Qi, M.L. Liu, Reverse micelles template assisted fabrication of ZnO hollow nanospheres and hexagonal microtubes by a novel fast microemulsion-based hydrothermal method, J. Sol-Gel. Sci. Technol. 53 (2010) 101-106.

    22. [22]

      [22] M. Wang, X.L. Cao, L.J. Wang, L.D. Zhang, Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance, J. Porous Mater. 17 (2010) 79-84.

    23. [23]

      [23] C.H. Deng, H.M. Hu, G.Q. Shao, C.L. Han, Facile template-free sonochemical fabrication of hollow ZnO spherical structures, Mater. Lett. 64 (2010) 852-855.

    24. [24]

      [24] X.S. Chen, X.Y. Jing, J. Wang, et al., Self-assembly of ZnO nanoparticles into hollow microspheres via a facile solvothermal route and their application as gas sensor, CrystEngComm 15 (2013) 7243-7249.

    25. [25]

      [25] X.M. Ma, X.T. Zhang, L. Yang, et al., An unusual temperature gradient crystallization process: facile synthesis of hierarchical ZnO porous hollow spheres with controllable shell numbers, CrystEngComm 16 (2014) 7933-7941.

    26. [26]

      [26] R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281 (1998) 969-971.

    27. [27]

      [27] Y. Chang, J.J. Teo, H.C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres, Langmuir 21 (2005) 1074-1079.

    28. [28]

      [28] B. Liu, H.C. Zeng, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors, Small 1 (2005) 566-571.

    29. [29]

      [29] B.P. Jia, L. Gao, Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field, J. Phys. Chem. C 112 (2008) 666-671.

    30. [30]

      [30] Y.D. Yin, R.M. Rioux, C.K. Erdonmez, et al., Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science 304 (2004) 711-714.

    31. [31]

      [31] X. Liang, X. Wang, Y. Zhuang, et al., Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect, J. Am. Chem. Soc. 130 (2008) 2736-2737.

    32. [32]

      [32] X. Wang, Y.J. Yang, Y. Ma, J.N. Yao, Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route, Chin. Chem. Lett. 24 (2013) 1-6.

    33. [33]

      [33] J. Rao, A. Yu, C.L. Shao, X.F. Zhou, Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property, ACS Appl. Mater. Interfaces 4 (2012) 5346-5352.

    34. [34]

      [34] M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing, J. Phys. Chem. C 115 (2011) 12763-12773.

    35. [35]

      [35] X.W. Li, P. Sun, T.L. Yang, et al., Template-free microwave-assisted synthesis of ZnO hollow microspheres and their application in gas sensing, CrystEngComm 15 (2013) 2949-2955.

    36. [36]

      [36] P. Song, Q. Wang, Z.X. Yang, Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction, Mater. Lett. 86 (2012) 168-170.

  • 加载中
    1. [1]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    2. [2]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    6. [6]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    7. [7]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    8. [8]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    9. [9]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    10. [10]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    11. [11]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    12. [12]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    13. [13]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    14. [14]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    15. [15]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    16. [16]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    17. [17]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    18. [18]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    19. [19]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    20. [20]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

Metrics
  • PDF Downloads(0)
  • Abstract views(564)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return