Citation: Juan Feng, Ting Han, Mi-Qing Zhang, Yu Zhou, Qing-Qin Wu. Application of 2D fluorescence correlation method to investigate the dilution-induced heterogeneous distribution of the bound FMN in azoreductase[J]. Chinese Chemical Letters, ;2015, 26(2): 210-214. doi: 10.1016/j.cclet.2014.11.019 shu

Application of 2D fluorescence correlation method to investigate the dilution-induced heterogeneous distribution of the bound FMN in azoreductase

  • Corresponding author: Juan Feng, 
  • Received Date: 1 September 2014
    Available Online: 22 October 2014

    Fund Project:

  • AzoR is a homodimeric, flavin mononucleotide (FMN)-containing, NADH-dependent azoreductase from Escherichia coli. In this paper, we investigated the effect of the concentration of both AzoR and R59G on the spectral behavior of the bound FMN using two-dimensional fluorescence correlation spectra. Two cross peaks (530, 490) and (580, 530) were observed from the dilution-induced 2D asynchronous correlation map of wt AzoR, while only one cross peak appeared at (600, 530) for R59G mutant. This result indicated that the mutation at site 59 influenced the formation of dilution-induced intermediates. The specific activity of both AzoR and R59G mutant was unaffected by dilution when the enzyme concentration is below 1 mmol/L, which suggested that no significant dissociation of FMN occurred at low concentrations. Additionally, in order to explore the origin of these intermediates, we carried out a 2D correlation analysis using excitation wavelength-dependent fluorescence emission spectroscopy. The results showed that there coexisted two types of FMN that emitted fluorescence at 530 nm and 500 nm, respectively. Taken together, these results suggested that the 2D method is a very powerful method to identify the heterogeneous distribution of the bound FMN in solution.
  • 加载中
    1. [1]

      [1] A. Losi, W. Gartner, The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors, Annu. Rev. Plant Biol. 63 (2012) 49-72.

    2. [2]

      [2] D. Immeln, A. Weigel, T. Kottke, J.L. Pé rez Lustres, Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy, J. Am. Chem. Soc. 134 (2012) 12536-12546.

    3. [3]

      [3] M. Sugishima, H. Sato, Y. Higashimoto, et al., Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 2524-2529.

    4. [4]

      [4] F. Muller, The flavin redox-system and its biological function, Top. Curr. Chem. 108 (1983) 71-107.

    5. [5]

      [5] M. Nakanishi, C. Yatome, N. Ishida, Y. Kitade, Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase, J. Biol. Chem. 276 (2001) 46394-46399.

    6. [6]

      [6] C.J. Wang, N. Laurieri, A. Abuhammad, et al., Role of tyrosine 131 in the active site of paAzoR1, an azoreductase with specificity for the inflammatory bowel disease prodrug balsalazide, Acta Crystallogr. 66 (2010) 2-7.

    7. [7]

      [7] Y.Y. Yang, L.L. Lu, F. Gao, Y.H. Zhao, Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1, Environ. Sci. Pollut. Res. 20 (2013) 3232-3239.

    8. [8]

      [8] M.K. Johansson, A.C. Wong, E.S. Armstrong, et al., BTI1, an azoreductase with pHdependent substrate specificity, Appl. Environ. Microbiol. 77 (2011) 4223-4225.

    9. [9]

      [9] O. Toshihiko, S. Takeshi, S. Reiko, et al., An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization, Appl. Microbiol. Biotechnol. 75 (2007) 377-386.

    10. [10]

      [10] K. Ito, M. Nakanishi, W.C. Lee, et al., Three-dimensional structure of AzoR from Escherichia coli. An oxireductase conserved in microorganisms, J. Biol. Chem. 281 (2006) 20567-20576.

    11. [11]

      [11] K. Ito, M. Nakanishi, W.C. Lee, et al., Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis, J. Biol. Chem. 283 (2008) 13889-13896.

    12. [12]

      [12] V. Brissos, N. Gonçalves, E.P. Melo, L.O. Martins, Improving kinetic or thermodynamic stability of anazoreductase by directed evolution, PLoSONE 9 (2014) e87209.

    13. [13]

      [13] Y.J.M. Bollen, A.H. Westphal, S. Lindhoud, W.J.H. van Berke, C.P.M. van Mierlo, Distant residues mediate picomolar binding affinity of a protein cofactor, Nat. Commun. 3 (2010) 1010.

    14. [14]

      [14] F. Tanaka, H. Chosrowjan, S. Taniguchi, et al., Donor-acceptor distance-dependence of photoinduced electron-transfer rate in flavoproteins, J. Phys. Chem. B 111 (2007) 5694-5699.

    15. [15]

      [15] H. Staudt, D. Oesterhelt, M. Gringinger, J. Wachtveitl, Ultrafast excited-state deactivation of flavins bound to dodecin, J. Biol. Chem. 287 (2012) 17637-17644.

    16. [16]

      [16] Y. He, G.F. Wang, J. Cox, L. Geng, Two-dimensional fluorescence correlation spectroscopy with modulated excitation, Anal. Chem. 73 (2001) 2302-2309.

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    3. [3]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    4. [4]

      Jiaming LiNa XuYafei ZhangHongjun DongChunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470

    5. [5]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    6. [6]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    7. [7]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    8. [8]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    9. [9]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    10. [10]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    11. [11]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    12. [12]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    13. [13]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    14. [14]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    15. [15]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    16. [16]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    17. [17]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    18. [18]

      Xiangrong PanXixi HouYuhang DuZhixin PangShiyang HeLan WangJianxue YangLongfei MaoJianhua QinHaixia WuBaozhong LiuZhan ZhouLufang MaChaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536

    19. [19]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    20. [20]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

Metrics
  • PDF Downloads(0)
  • Abstract views(1096)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return