Citation: Hai-Liang Hou, Fang-Li Qiu, An-Guo Ying, Song-Lin Xu. DABCO-based ionic liquids: Green and efficient catalysts with a dual catalytic role for aza-Michael addition[J]. Chinese Chemical Letters, ;2015, 26(3): 377-381. doi: 10.1016/j.cclet.2014.11.018 shu

DABCO-based ionic liquids: Green and efficient catalysts with a dual catalytic role for aza-Michael addition

  • Corresponding author: An-Guo Ying,  Song-Lin Xu, 
  • Received Date: 28 September 2014
    Available Online: 28 October 2014

    Fund Project: and Zhejiang Provincial Natural Science Foundation of China (No. LY12B02004). (No. 2012E10033)

  • Four recoverable and reusable ionic liquids based on 1,4-diazobicyclo[2.2.2]octane (DABCO) have been synthesized to catalyze the aza-Michael addition of secondary amines to α,β-unsaturated compounds. Among the catalysts tested, [DABCO-PDO][OAc] was found to be most suitable for the reaction of a wide range of cyclic substrates without any solvent at room temperature, and afford the products in good to excellent yields within an appropriate amount of time. The proposed mechanism for the dual activation of the catalyst was supported by experimental results as well as the DFT calculation. In addition, the ionic liquids used can be regenerated and recycled several times without any loss of activity.
  • 加载中
    1. [1]

      [1] L.W. Xu, C.G. Xia, X.X. Hu, An efficient and inexpensive catalyst system for the aza-Michael reactions of enones with carbamates, Chem. Commun. 20 (2003) 2570-2571.

    2. [2]

      [2] V. Kapras, R. Pohl, I. Císařová, U. Jahn, Asymmetric domino aza-Michael addition/[3+2] cycloaddition reactions as a versatile approach to α, β, γ-triamino acid derivatives, Org. Lett. 16 (2014) 1088-1091.

    3. [3]

      [3] M.L. Kantama, M. Roy, S. Roy, B. Sreedhar, R.L. De, Polyaniline supported CuI: an efficient catalyst for C-N bond formation by N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids, and aza-Michael reactions of amines with activated alkenes, Catal. Commun. 9 (2008) 2226-2230.

    4. [4]

      [4] D. Bandyopadhyay, S. Mukherjee, L.C. Turrubiartes, B.K. Banik, Ultrasoundassisted aza-Michael reaction in water: a green procedure, Ultrason. Sonochem. 19 (2012) 969-973.

    5. [5]

      [5] N. Morimoto, Y. Takeuchi, Y. Nishina, Ionic amino acids: application as organocatalysts in the aza-Michael reaction, J. Mol. Catal. A: Chem. 368 (2013) 31-37.

    6. [6]

      [6] T.K.T. Truong, G. Vo-Thanh, Synthesis of functionalized chiral ammonium, imidazolium, and pyridinium-based ionic liquids derived from (-)-ephedrine using solvent-free microwave activation. Applications for the asymmetric Michael addition, Tetrahedron 66 (2010) 5277-5282.

    7. [7]

      [7] Y.Dai, B.D.Li,H.D.Quan, C.X.Lü, [Hmim]3PW12O40: ahigh-efficientandgreencatalyst for the acetalization of carbonyl compounds, Chin. Chem. Lett. 21 (2010) 678-681.

    8. [8]

      [8] D.E. Siyutkin, A.S. Kucherenko, S.G. Zlotin, A new (S)-prolinamide modified by an ionic liquid moiety—a high performance recoverable catalyst for asymmetric aldol reactions in aqueous media, Tetrahedron 66 (2010) 513-518.

    9. [9]

      [9] A.G. Ying, L. Liu, G.F. Wu, et al., Aza-Michael addition of aliphatic or aromatic amines to a, b-unsaturated compounds catalyzed by a DBU-derived ionic liquid under solvent-free conditions, Tetrahedron Lett. 50 (2009) 1653-1657.

    10. [10]

      [10] S. Sahler, H. Konnerth, N. Knoblauch, M.H.G. Prechtl, Hydrogen storage in amine boranes: ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane, Int. J. Hydrogen Energy 38 (2013) 3283-3290.

    11. [11]

      [11] X. Zheng, Y.B. Qian, Y.M. Wang, 2-Pyrrolidinecarboxylic acid ionic liquid as a highly efficient organocatalyst for the asymmetric one-pot Mannich reaction, Eur. J. Org. Chem. 2010 (2010) 515-522.

    12. [12]

      [12] E.V. Matveeva, P.V. Petrovskii, Z.S. Klemenkova, N.A. Bondarenko, I.L. Odinets, A practical and efficient green synthesis of β-aminophosphoryl compounds via the aza-Michael reaction in water, Comptes Rendus Chimie 13 (2010) 964-970.

    13. [13]

      [13] A.G. Ying, Y.X. Ni, S.L. Xu, et al., Novel DABCO based ionic liquids: green and efficient catalysts with dual catalytic roles for aqueous Knoevenagel condensation, Ind. Eng. Chem. Res. 53 (2014) 5678–5682.

    14. [14]

      [14] A.G. Ying, Z.F. Li, J.G. Yang, et al., DABCO based ionic liquids: recyclable catalysts for aza-Michael addition of alpha, beta-unsaturated amides under solvent-free conditions, J. Org. Chem. 79 (2014) 6510–6516.

    15. [15]

      [15] K.P. Dhake, P.J. Tambade, R.S. Singhal, B.M. Bhanage, Promiscuous Candida Antarctica lipase B-catalyzed synthesis of β-amino esters via aza-Michael addition of amines to acrylates, Tetrahedron Lett. 51 (2010) 4455–4458.

    16. [16]

      [16] S. Hussain, S.K. Bharadwaj, M.K. Chaudhuri, H. Kalita, Borax as an efficient metalfree catalyst for hetero-Michael reactions in an aqueous medium, Eur. J. Org. Chem. 2007 (2007) 374–378.

    17. [17]

      [17] V.R. Choudhary, D.K. Dumbre, S.K. Patil, FeCl3/Montmorillonite K10 as an efficient catalyst for solvent-free aza-Michael reaction between amine and a, b-unsaturated compounds, RSC Adv. 2 (2012) 7061–7065.

    18. [18]

      [18] X. Liu, M. Lu, G. Gu, T. Lu, Aza-Michael reactions in water using functionalizedionic liquids as the recyclable catalysts, J. Iran. Chem. Soc. 8 (2011) 775–781.

    19. [19]

      [19] M. Dabiri, P. Salehi, M. Bahramnejad, M. Baghbanzadeh, Ecofriendly and efficient procedure for hetero-Michael addition reactions with an acidic ionic liquid as catalyst and reaction medium, Monatsh Chem. 143 (2012) 109–112.

    20. [20]

      [20] S. Mori, M. Ue, K. Ida, Electrolyte for aluminum electrolytic capacitor, US Patent US4774011 (1988).

    21. [21]

      [21] H. Guo, J.L. Wang, X. Li, D.S. Lü, X.F. Lin, Oxa-Michael addition catalyzed by amidebased acidic ionic liquids, Chin. J. Catal. 32 (2011) 162–165.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    4. [4]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    5. [5]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    6. [6]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    10. [10]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    11. [11]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    12. [12]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    13. [13]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    14. [14]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    15. [15]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    16. [16]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    17. [17]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    18. [18]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    19. [19]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    20. [20]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

Metrics
  • PDF Downloads(0)
  • Abstract views(577)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return