Citation:
Qi Sun, Cheng-Jun Wang, Shan-Shan Gong, Yong-Jian Ai, Hong-Bin Sun. Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions[J]. Chinese Chemical Letters,
;2015, 26(3): 297-300.
doi:
10.1016/j.cclet.2014.11.014
-
A microwave-assisted general method for the synthesis of 2-aminovinyl benzimidazoles has been developed. Treatment of the 1,2-phenylenediamines and N-arylated/N,N-dialkylated 3-aminoacroleins with bis(cyclopentadienyl)zirconium(IV) dichloride (Cp2ZrCl2) as the catalyst under microwave irradiation for 3-5 min followed by in situ MnO2 oxidation afforded thirteen 2-aminovinyl benzimidazoles in good yields.
-
Keywords:
- Benzimidazoles,
- Cp2ZrCl2,
- 3-Aminoacroleins,
- Microwave
-
-
-
[1]
[1] (a) P.N. Preston, Synthesis, reactions, and spectroscopic properties of benzimidazoles, Chem. Rev. 74 (1974) 279-314; (b) L.C.R. Carvalho, E. Fernandes, M.M.B. Marques, Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles, Chem. Eur. J. 17 (2011) 12544-12555.
-
[2]
[2] M. Alamgir, D.S.C. Black, N. Kumar, Synthesis, reactivity and biological activity of benzimidazoles, Top. Heterocycl. Chem. 21 (2007) 87-118.
-
[3]
[3] Q. Sun, R.Z. Wu, S.T. Cai, et al., Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV, J. Med. Chem. 54 (2011) 1126-1139.
-
[4]
[4] J.M. Smith, V. Krchnak, A solid phase traceless synthesis of benzimidazoles with three combinatorial steps, Tetrahedron Lett. 40 (1999) 7633-7636.
-
[5]
[5] P.L. Beaulieu, B. Hache, E. von Moos, A practical oxone-mediated, high-throughput, solution-phase synthesis of benzimidazoles from 1,2-phenylenediamines and aldehydes and its application to preparative scale synthesis, Synthesis (2003) 1683-1692.
-
[6]
[6] P. Gogoi, D. Konwar, An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water, Tetrahedron Lett. 47 (2006) 79-82.
-
[7]
[7] S.Y. Kim, K.H. Park, Y.K. Chung, Manganese(IV) dioxide-catalyzed synthesis of quinoxalines under microwave irradiation, Chem. Commun. (2005) 1321-1323.
-
[8]
[8] J.P. Mayer, G.S. Lewis, C. McGee, et al., Solid-phase synthesis of benzimidazoles, Tetrahedron Lett. 39 (1998) 6655-6658.
-
[9]
[9] R.R. Nagawade, D.B. Shinde, BF3 OEt2 promoted solvent-free synthesis of benzimidazole derivatives, Chin. Chem. Lett. 17 (2006) 453-456.
-
[10]
[10] M.B. Wallace, J. Feng, Z.Y. Zhang, et al., Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors, Bioorg. Med. Chem. Lett. 18 (2008) 2361-2362.
-
[11]
[11] L.P. Duan, Q. Li, N.B. Wu, et al., Synthesis of 2,5-disubstitued benzimidazole using SnCl2-catalyzed reduction system at room temperature, Chin. Chem. Lett. 25 (2014) 155-158.
-
[12]
[12] (a) Z.H. Zhang, L. Yin, Y.M. Wang, An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids, Catal. Commun. 8 (2007) 1126-1131; (b) R.R. Nagawade, D.B. Shinde, Zirconyl(IV) chloride-promoted synthesis of benzimidazole derivatives, Russ. J. Org. Chem. 42 (2006) 453-454.
-
[13]
[13] K. Deo, S. Kanwar, A. Pandey, et al., Process for the preparation of N-methyl anilino acrolein, WO 2005090256, Chem. Abstr. 145 (2006) 292712.
-
[14]
[14] (a) G. Navarrete-Vázquez, H. Moreno-Diaz, F. Aguirre-Crespo, et al., Design, microwave-assisted synthesis, and spasmolytic activity of 2-(alkyloxyaryl)-1Hbenzimidazole derivatives as constrained stilbene bioisosteres, Bioorg. Med. Chem. Lett. 16 (2006) 4169-4173; (b) R.G. Jacob, L.G. Dutra, C.S. Radatz, et al., Synthesis of 1,2-disubstituted benzimidazoles using SiO2/ZnCl2, Tetrahedron Lett. 50 (2009) 1495-1497.
-
[1]
-
-
-
[1]
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
-
[2]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[3]
Chengyao Zhao , Jingyuan Liao , Yuxiang Zhu , Yiying Zhang , Lianjie Zhai , Junrong Huang , Hengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337
-
[4]
Chunwei Lei , Jian Li , Bo Xu , Yu Xie , Yun Ling , Juhua Luo , Wei Zhang . Synthesis of Ni/MnO/C nano-microspheres with synergistic effects of dielectric and magnetic loss for efficient microwave absorption. Chinese Chemical Letters, 2025, 36(7): 110419-. doi: 10.1016/j.cclet.2024.110419
-
[5]
Ying Zhao , Yin-Hang Chai , Tian Chen , Jie Zheng , Ting-Ting Li , Francisco Aznarez , Li-Long Dang , Lu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298
-
[6]
Chunhui Gao , Lurong Li , Guanwei Peng , Jinni Shen , Wenxin Dai , Zizhong Zhang . Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flower-like microspheres. Acta Physico-Chimica Sinica, 2026, 42(3): 100165-0. doi: 10.1016/j.actphy.2025.100165
-
[7]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[8]
Junying LI , Xinyan CHEN , Xihui DIAO , Muhammad Yaseen , Chao CHEN , Hao WANG , Chuansong QI , Wei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084
-
[9]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[10]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[13]
Qin Wang , Han Luo , Luli Wang , Ling Huang , Liling Cao , Xuehua Dong , Guohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173
-
[14]
Qi HUANG , Youyi WANG , Zhujian MAO , Zhonghui YE , Weihan CHEN , Jui-yeh RAU , Jian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159
-
[15]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
-
[16]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[17]
Ruixin XU , Hongtuo LI , Chen SHI , Yanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055
-
[18]
Yi-Chang Yang , Rui-Xi Wang , Li-Ming Wu , Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714
-
[19]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[20]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1195)
- HTML views(54)
Login In
DownLoad: