Citation: Rui Zhang, Dong-Xing Yuan, Bao-Min Liu. Kinetics and products of ozonation of C.I. Reactive Red 195 in a semi-batch reactor[J]. Chinese Chemical Letters, ;2015, 26(1): 93-99. doi: 10.1016/j.cclet.2014.10.024 shu

Kinetics and products of ozonation of C.I. Reactive Red 195 in a semi-batch reactor

  • Corresponding author: Dong-Xing Yuan, 
  • Received Date: 26 May 2014
    Available Online: 9 October 2014

  • Textile wastewater shows great threats to the environment if not well pretreated before discharge. A promising technique, ozonation, was applied to remove the color in dye solutions containing C.I. Reactive Red 195 (RR195) in a semi-batch reactor. The decolorization of RR195 by the ozone process followed pseudo-first-order kinetics. Several factors which influenced the efficiency of decolorization were studied and the reaction rate constant (k) obtained with different operational parameters was compared. Our results showed that RR195 was more easily degraded in acidic than in alkaline conditions. The dyeing auxiliaries (sodium carbonate and sodium chloride) that acted as radical scavengers could enhance the decolorization process, and the ozonation time for total color removal lengthened if the initial dye concentration was higher. The analysis of the ozonation products was performed by liquid chromatography-tandem mass spectrometer and a possible degradation pathway was predicted according to the ozonation products and structure of RR195. Our results indicated that ozonation was effective in the color removal of dyes, but further treatment might be necessary since the ozonation products are high toxic.
  • 加载中
    1. [1]

      [1] H.L. Lin, H.Y. Li, C.H. Yang, Agglomeration and productivity: firm-level evidence from China's textile in-dustry, China Econ. Rev. 22 (2011) 313-329.

    2. [2]

      [2] J. Chen, Q. Wang, Z. Hua, G. Du, Research and application of biotechnology in textile industries in China, Enzyme Microb. Technol. 40 (2007) 1651-1655.

    3. [3]

      [3] C. Hachem, F. Bocquillon, O. Zahraa, M. Bouchy, Decolourization of textile industry wastewater by the photocatalytic degradation process, Dyes Pigments 49 (2001) 117-125.

    4. [4]

      [4] H. Ali, S.K. Muhammad, Biodecolorization of acid violet 19 by Alternaria solani, Afr. J. Biotechnol. 7 (2008) 831-833.

    5. [5]

      [5] L. Núñez, J.A. García-Hortal, F. Torrades, Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes, Dyes Pigments 75 (2007) 647-652.

    6. [6]

      [6] G. Masoud, R. Roohan, M.A. Mohammad, Removal of methylene blue by tea wastages from the synthesis waste waters, Chin. Chem. Lett. 22 (2011) 225-228.

    7. [7]

      [7] H. Yao, X.M. You, Q. Lin, et al., Multi-stimuli responsive metal-organic gel of benzimidazol-based ligands with lead nitrate and their use in removal of dyes from waste-water, Chin. Chem. Lett. 24 (2013) 703-706.

    8. [8]

      [8] L.B. Chu, X.H. Xing, A.F. Yu, et al., Enhanced ozonation of simulated dyestuff wastewater by microbubbles, Chemosphere 68 (2007) 1854-1860.

    9. [9]

      [9] M.H. Santana, L.M. Da Silva, A.C. Freitas, et al., Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122, J. Hazard. Mater. 164 (2009) 10-17.

    10. [10]

      [10] S. Meriç, D. Kaptan, T.Ölmez, Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process, Chemosphere 54 (2004) 435-441.

    11. [11]

      [11] H.S. El-Desoky, M.M. Ghoneim, R. El-Sheikh, N.M. Zidan, Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent, J. Hazard. Mater. 175 (2010) 858-865.

    12. [12]

      [12] I. Arslan, I.A. Balcioglu, D.W. Bahnemann, Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts, Appl. Catal. B: Environ. 26 (2000) 193-206.

    13. [13]

      [13] K. Chiang, R. Amal, T. Tran, Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide, Adv. Environ. Res. 6 (2002) 471-485.

    14. [14]

      [14] J. Anotai, M.C. Lu, P. Chewpreecha, Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res. 40 (2006) 1841-1847.

    15. [15]

      [15] I. Kim, N. Yamashita, H. Tanaka, Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater. 166 (2009) 1134-1140.

    16. [16]

      [16] M. Deborde, S. Rabouan, P. Mazellier, J.P. Duguet, B. Legube, Oxidation of bisphenol A by ozone in aqueous solution, Water Res. 42 (2008) 4299-4308.

    17. [17]

      [17] L.W. Lackey, R.O. Mines Jr., P.T. McCreanor, Ozonation of acid yellow 17 dye in a semi-batch bubble column, J. Hazard. Mater. 138 (2006) 357-362.

    18. [18]

      [18] P.C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies, J. Chem. Technol. Biotechnol. 72 (1998) 289-302.

    19. [19]

      [19] A. López-López, J.S. Pic, H. Debellefontaine, Ozonation of azo dye in a semi-batch reactor: a determination of the molecular and radical contributions, Chemosphere 66 (2007) 2120-2126.

    20. [20]

      [20] T.Y. Chen, C.M. Kao, A. Hong, C.E. Lin, S.H. Liang, Application of ozone on the decolorization of reactive dyes - Orange-13 and Blue-19, Desalination 249 (2009) 1238-1242.

    21. [21]

      [21] A. Lopez, G. Ricco, G. Mascolo, et al., Biodegradability enhancement of refractory pollutants by ozonation: a laboratory investigation on an azo-dyes intermediate, Water Sci. Technol. 38 (1998) 239-245.

    22. [22]

      [22] X.J. Wang, X.Y. Gu, D.X. Lin, F. Dong, X.F. Wan, Treatment of acid rose dye containing wastewater by ozonizing - biological aerated filter, Dyes Pigments 74 (2007) 736-740.

    23. [23]

      [23] Y. He, X. Wang, J. Xu, et al., Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents, Bioresour. Technol. 133 (2013) 150-157.

    24. [24]

      [24] J.Z. Li, Dyeing Industry Wastewater Treatment, Chemical Industry Press, Beijing, 1997 (in Chinese).

    25. [25]

      [25] S. Song, H.P. Ying, Z.Q. He, J.M. Chen, Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis, Chemosphere 66 (2007) 1782-1788.

    26. [26]

      [26] A.C. Gomes, J.C. Nunes, R.M. Simões, Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system, J. Hazard. Mater. 178 (2010) 57-65.

    27. [27]

      [27] R. Molinari, F. Pirillo, M. Falco, V. Loddo, L. Palmisano, Photocatalytic degradation of dyes by using a membrane reactor, Chem. Eng. Process. 43 (2004) 1103-1114.

    28. [28]

      [28] C. Wang, A. Yediler, D. Lienert, Z. Wang, A. Kettrup, Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products, Chemosphere 52 (2003) 1225-1232.

    29. [29]

      [29] M. Muthukumar, N. Selvakumar, Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation, Dyes Pigments 62 (2004) 221-228.

    30. [30]

      [30] M. Koch, A. Yediler, D. Lienert, G. Insel, A. Kettrup, Ozonation of hydrolyzed azo dye reactive yellow 84 (CI), Chemosphere 46 (2002) 109-113.

    31. [31]

      [31] Ministry of Housing and Urban-Rural Construction of the People's Republic of China, Ozone Generator for Water and Waste Water Treatment, Ministry of Housing and Urban-Rural Construction of the People's Republic of China, Beijing, 2010 (in Chinese).

    32. [32]

      [32] R. Rosal, A. Rodriguez, M. Zerhouni, Enhancement of gas-liquid mass transfer during the unsteady-state catalytic decomposition of ozone in water, Appl. Catal. A: Gen. 305 (2006) 169-175.

    33. [33]

      [33] A.R. Tehrani-Bagha, N.M. Mahmoodi, F.M. Menger, Degradation of a persistent organic dye from colored textile wastewater by ozonation, Desalination 260 (2010) 34-38.

    34. [34]

      [34] M.T.F. Tabrizi, D. Glasser, D. Hildebrandt, Wastewater treatment of reactive dyestuffs by ozonation in a semi-batch reactor, Chem. Eng. J. 166 (2011) 662-668.

    35. [35]

      [35] S.J. Stohs, S. Ohia, D. Bagchi, Naphthalene toxicity and antioxidant nutrients, Toxicology 180 (2002) 97-105.

  • 加载中
    1. [1]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    2. [2]

      Jingyi YangSihan WangXubiao LuoZhenyang YuYanbo Zhou . Fenton-like process in antibiotic-containing wastewater treatment: Applications and toxicity evaluation. Chinese Chemical Letters, 2025, 36(12): 110996-. doi: 10.1016/j.cclet.2025.110996

    3. [3]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    4. [4]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    5. [5]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    6. [6]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    7. [7]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    10. [10]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    11. [11]

      Shengdong JingXiaoli PengShilan LiLong YuanShengjun LuYufei ZhangHaosen Fan . Synergistic realization of fast polysulfide redox kinetics and stable lithium anode in Li-S battery from CoNi-MOF/MXene derived CoNi@TiO2/C heterostructure. Chinese Chemical Letters, 2025, 36(10): 110732-. doi: 10.1016/j.cclet.2024.110732

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    14. [14]

      Longjian LiPing ZhangYongchong YuReyila TuerhongXiaoping SuLijuan HanEnzhou LiuJizhou Jiang . Electron trap-induced charge accumulation and surface reaction kinetics synergistically enhance overall nitrogen photofixation. Chinese Chemical Letters, 2025, 36(8): 111118-. doi: 10.1016/j.cclet.2025.111118

    15. [15]

      Yongyi LiJin HanXiangyu WangZhenwei WeiIn-situ reaction monitoring and kinetics study of photochemical reactions by optical focusing inductive electrospray mass spectrometry. Chinese Chemical Letters, 2025, 36(9): 110708-. doi: 10.1016/j.cclet.2024.110708

    16. [16]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    17. [17]

      Kunya WangBingyu LiuDaojiang YanJian BaiHaibo YuYoucai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811

    18. [18]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    19. [19]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    20. [20]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

Metrics
  • PDF Downloads(0)
  • Abstract views(1106)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return