Citation: Kai-Yi Zheng, Xuan Zhang, Pei-Jing Tong, Yuan Yao, Yi-Ping Du. Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD)[J]. Chinese Chemical Letters, ;2015, 26(3): 293-296. doi: 10.1016/j.cclet.2014.10.023 shu

Pretreating near infrared spectra with fractional order Savitzky-Golay differentiation (FOSGD)

  • Corresponding author: Yi-Ping Du, 
  • Received Date: 15 July 2014
    Available Online: 20 October 2014

  • With the aid of Riemann-Liouville fractional calculus theory, fractional order Savitzky-Golay differentiation (FOSGD) is calculated and applied to pretreat near infrared (NIR) spectra in order to improve the performance of multivariate calibrations. Similar to integral order Savitzky-Golay differentiation (IOSGD), FOSGD is obtained by fitting a spectral curve in a moving window with a polynomial function to estimate its coefficients and then carrying out the weighted average of the spectral curve in the window with the coefficients. Three NIR datasets including diesel, wheat and corn datasets were utilized to test this method. The results showed that FOSGD, which is easy to compute, is a generalmethod to obtain Savitzky-Golay smoothing, fractional order and integral order differentiations. Fractional order differentiation computation to the NIR spectra often improves the performance of the PLS model with smaller RMSECV and RMSEP than integral order ones, especially for physical properties of interest, such as density, cetane number and hardness.
  • 加载中
    1. [1]

      [1] W.Q. Luo, S.Y. Huan, H.Y. Fu, et al., Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples, Food Chem. 128 (2011) 555-561.

    2. [2]

      [2] H.Y. Mou, X.J. Wang, T. Lü, L. Xie, H.P. Xie, On-line dissolution determination of Baicalin in solid dispersion based on near infrared spectroscopy and circulation dissolution system, Chemom. Intell. Lab. Syst. 105 (2011) 38-42.

    3. [3]

      [3] Z.Z. Wu, H. Lu, B. Zhang, et al., Studies on short tandem repeat genotyping and its expert system based on ultraviolet spectroscopy-principal discriminant variate, Chemom. Intell. Lab. Syst. 105 (2011) 181-187.

    4. [4]

      [4] J.J. Liu, H. Xu, W.S. Cai, X.G. Shao, Discrimination of industrial products by on-line near infrared spectroscopy with an improved dendrogram, Chin. Chem. Lett. 22 (2011) 1241-1244.

    5. [5]

      [5] Y.P. Du, X.M. Wei, H.P. Xie, Z.X. Huang, J.J. Fang, An enrichment device of silicabased monolithic material and its application to determine micro-carbaryl by NIRS, Chin. Chem. Lett. 20 (2009) 469-472.

    6. [6]

      [6] Y.M. Xiong, X.Z. Song, C.Z. Chen, et al., The establishment and evaluation of near infrared universal model to determinate the effective ingredient content in pesticide rapidly, Chin. Chem. Lett. 23 (2012) 1047-1050.

    7. [7]

      [7] H.H. Yang, F. Qin, Q.L. Liang, et al., LapRLSR for NIR spectral modeling and its application to online monitoring of the column separation of Salvianolate, Chin. Chem. Lett. 18 (2007) 852-856.

    8. [8]

      [8] C.J. Cui, W.S. Cai, X.G. Shao, Near-infrared diffuse reflectance spectroscopy with sample spots and chemometrics for fast determination of bovine serum albumin in micro-volume samples, Chin. Chem. Lett. 24 (2013) 67-69.

    9. [9]

      [9] Y.N. Ni, W. Lin, Near-infrared spectra combined with partial least squares for pH determination of toothpaste of different brands, Chin. Chem. Lett. 22 (2011) 1473-1476.

    10. [10]

      [10] A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36 (1964) 1627-1639.

    11. [11]

      [11] J.E.J. Staggs, Savitzky-Golay smoothing and numerical differentiation of cone calorimeter mass data, Fire Safety J. 40 (2005) 493-505.

    12. [12]

      [12] H.H. Madden, Comments on the Savitzky-Golay convolution method for leastsquares-fit smoothing and differentiation of digital data, Anal. Chem. 50 (1978) 1383-1386.

    13. [13]

      [13] T.K. Kalkandjiev, V.P. Petrov, J.B. Nickolov, Deconvolution versus derivative spectroscopy, Appl. Spectrosc. 43 (1989) 44-48.

    14. [14]

      [14] Y. Mitsuka, J. Uozumi, T. Asakura, Error reduction in spectrum estimation by means of concentration-spectrum correlation, Appl. Spectrosc. 44 (1990) 695-700.

    15. [15]

      [15] J.M. Schmitt, Fractional derivative analysis of diffuse reflectance spectra, Appl. Spectrosc. 52 (1998) 840-846.

    16. [16]

      [16] S.S. Kharintsev, D.I. Kamalova, M.K. Salakhov, Resolution enhancement of composite spectra with fractal noise in derivative spectrometry, Appl. Spectrosc. 54 (2000) 721-730.

    17. [17]

      [17] D.K. Buslov, Modification of derivatives for resolution enhancement of bands in overlapped spectra, Appl. Spectrosc. 58 (2004) 1302-1307.

    18. [18]

      [18] G.H. Gao, Z.Z. Sun, H.W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys. 259 (2014) 33-50.

    19. [19]

      [19] C.C. Tseng, S.C. Pei, S.C. Hsia, Computation of fractional derivatives using Fourier transform and digital FIR differentiator, Signal Process. 80 (2000) 151-159.

    20. [20]

      [20] Y. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review, Nonlinear Dyn. 38 (2004) 155-170.

    21. [21]

      [21] Z. Gao, X.Z. Liao, Discretization algorithm for fractional order integral by Haar wavelet approximation, Appl. Math. Comput. 218 (2011) 1917-1926.

    22. [22]

      [22] Y.L. Li, H.Q. Tang, H.X. Chen, Fractional-order derivative spectroscopy for resolving simulated overlapped Lorenztian peaks, Chemom. Intell. Lab. Syst. 107 (2011) 83-89.

    23. [23]

      [23] D.L. Chen, Y.Q. Chen, D.Y. Xue, Digital fractional order Savitzky-Golay differentiator, IEEE Trans. Circuits Syst. II: Express Briefs 58 (2011) 758-762.

    24. [24]

      [24] H.A. Jalab, R.W. Ibrahim, Texture enhancement based on the Savitzky-Golay fractional differential operator, Math. Probl. Eng. 2013 (2013) 1-8.

    25. [25]

      [25] D. Bose, U. Basu, Unsteady incompressible flow of a generalised oldroyed-B fluid between two infinite parallel plates, World J. Mech. 3 (2013) 146-151.

    26. [26]

      [26] N. Makris, G. Dargush, M. Constantinou, Dynamic analysis of viscoelastic-fluid dampers, J. Eng. Mech. 121 (1995) 1114-1121.

  • 加载中
    1. [1]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    2. [2]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    3. [3]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    4. [4]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    5. [5]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    6. [6]

      Rakesh Kumar Gupta Zhi Wang Di Sun . Shining bright: Revolutionary near-unity NIR phosphorescent metal nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(11): 100417-100417. doi: 10.1016/j.cjsc.2024.100417

    7. [7]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    8. [8]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    9. [9]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    10. [10]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    11. [11]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    12. [12]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    13. [13]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    14. [14]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    15. [15]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    16. [16]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    17. [17]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    18. [18]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    19. [19]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    20. [20]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

Metrics
  • PDF Downloads(0)
  • Abstract views(572)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return