Citation: Ye-Feng Fan, Wen-Wen Zhang, Xu-Sheng Shao, Zhi-Ping Xu, Xiao-Yong Xu, Zhong Li. Facile three-component synthesis and insecticidal evaluation of hexahydroimidazo[1,2-a]pyridine derivatives[J]. Chinese Chemical Letters, ;2015, 26(1): 1-5. doi: 10.1016/j.cclet.2014.10.019 shu

Facile three-component synthesis and insecticidal evaluation of hexahydroimidazo[1,2-a]pyridine derivatives

  • Corresponding author: Zhong Li, 
  • Received Date: 18 August 2014
    Available Online: 14 October 2014

    Fund Project: This work was supported by National Key Technology R&D Program of China (No. 2011BAE06B01). (No. 2011BAE06B01)

  • A series of new hexahydroimidazo[1,2-a]pyridine derivatives were synthesized via convenient and practical three-component reactions. Preliminary bioassays showed that majority of the target compounds exhibited moderate to excellent insecticidal activity against cowpea aphids (Aphis craccivora). Among them, compound 9l demonstrated significant activity with LC50 value of 0.00918 mmol/L which was about 3.8-fold higher than that of imidacloprid (IMI). Furthermore, the study of stereostructure-activity relationship of four isomers of 9k indicated that configuration played a key role in insecticidal activity of these compounds.
  • 加载中
    1. [1]

      [1] M. Tomizawa, J.E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol. 45 (2005) 247-248.

    2. [2]

      [2] K. Matsuda, M. Tomizawa, M. Akamatsu, et al., Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies, Biosci. Biotechnol. Biochem. 69 (2005) 1442-1452.

    3. [3]

      [3] M. Tomizawa, T. Talley, D. Maltby, et al., Mapping the elusive neonicotinoid binding site, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 9075-9080.

    4. [4]

      [4] S. Kagabu, R. Ishihara, K. Nishimura, et al., Insecticidal and neuroblocking potencies of variants of the imidazolidine moiety of imidacloprid-related nenicotinoids and the relationship to partition coefficient and charge density on the pharmacophore, J. Agric. Food Chem. 55 (2007) 812-818.

    5. [5]

      [5] P. Jeschke, R. Nauen, Neonicotinoids - from zero to hero in insecticide chemistry, Pest Manage. Sci. 64 (2008) 1084-1098.

    6. [6]

      [6] M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticide: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269.

    7. [7]

      [7] P. Jeschke, R. Nauen, M.E. Beck, Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection, Angew. Chem. Int. Ed. 52 (2013) 9464-9485.

    8. [8]

      [8] K.G. Gorman, G. Devine, J. Bennison, et al., Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes Vaporariorum (Hemiptera: Aleyrodidae), Pest Manage. Sci. 63 (2007) 555-558.

    9. [9]

      [9] R.Nauen, I.Denholm,Resistanceof insectpests toneonicotinoidinsecticides:current status and future prospects, Arch. Insect Biochem. Physiol. 28 (2005) 200-215.

    10. [10]

      [10] K.G. Gorman, Z.W. Liu, K.U. Brüggen, et al., Neonicotinoid resistance in rice brown planthopper, Nilaparvata lugens, Pest Manage. Sci. 64 (2008) 1122-1125.

    11. [11]

      [11] A. Elbert, M. Haas, B. Springer, et al., Applied aspects of neonicotinoid uses in crop protection, Pest Manage. Sci. 64 (2008) 1099-1105.

    12. [12]

      [12] A. Elbert, R. Nauen, Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids, Pest Manage. Sci. 56 (2000) 60-64.

    13. [13]

      [13] C.W. Sun, J. Jin, J. Zhu, et al., Discovery of bis-aromatic ring neonicotinoid analogues fixed as cis-configuration: synthesis, insecticidal activities, and molecular docking studies, Bioorg. Med. Chem. Lett. 20 (2010) 3301-3305.

    14. [14]

      [14] X.S. Shao, Z. Li, X.H. Qian, et al., Design, synthesis, and insecticidal activities of novel analogues of neonicotinoids: replacement of nitromethylene with nitroconjugated system, J. Agric. Food Chem. 57 (2009) 951-957.

    15. [15]

      [15] X.S. Shao, Z.P. Xu, X.F. Zhao, et al., Synthesis, crystal structure, and insecticidal activities of highly congested hexahydroimidazo[1,2-a]pyridine derivatives: effect of conformation on activities, J. Agric. Food Chem. 58 (2010) 2690-2695.

    16. [16]

      [16] W.W. Zhang, Y.B. Chen, W.D. Chen, et al., Designing tetrahydroimidazo[1,2- a]pyridine derivatives via catalyst-free aza-Diels-Alder reaction (ADAR) and their insecticidal evaluation, J. Agric. Food Chem. 58 (2010) 6296- 6299.

    17. [17]

      [17] S. Kambe, K. Saito, A. Sakurai, et al., A simple method for the preparation of 2- amino-4-aryl-3-cyanopyridines by the condensation of malononitrile with aromatic aldehydes and alkyl ketones in the presence of ammonium acetate, Synthesis 5 (1980) 366-368.

    18. [18]

      [18] D. Kumar, V.B. Reddy, B.G. Mishra, et al., Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes, Tetrahedron 63 (2007) 3093-3097.

    19. [19]

      [19] C.G. Yan, X.K. Song, Q.F. Wang, et al., One-step synthesis of polysubstituted benzene derivatives by multi-component cyclization of alpha-bromoacetate, malononitrile and aromatic aldehydes, Chem. Commun. 12 (2008) 1440-1442.

    20. [20]

      [20] L.R. Wen, C.Y. Jiang, M. Li, et al., Application of 2-(2-chloroaroyl)methyleneimidazolidines in domino and multicomponent reaction: new entries to imidazo[ 1,2-a]pyridines and benzo[b]imidazo[1,2,3-ij][1,8]naphthyridines, Tetrahedron 67 (2011) 293-302.

    21. [21]

      [21] V.D. Dyachenko, S.G. Krivokolysko, V.P. Litvinov, Synthesis and some properties of 4-alkyl-5-cyano-6-mercapto-3,4-dihydropyridin-2(1H)-ones, Russ. Chem. Bull. (Engl. Transl.) 46 (1997) 1912-1915.

    22. [22]

      [22] H.F. Gan, W.W. Cao, Z. Fang, et al., Efficient synthesis of chromenopyridine and chromene via MCRs, Chin. Chem. Lett. 25 (2014) 1357-1362.

    23. [23]

      [23] J. Safaei-Ghomi, H. Shahbazi-Alavi, A. Ziarati, A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions, Chin. Chem. Lett. 25 (2014) 401-405.

    24. [24]

      [24] B. Mohammadi, M. Shafieey, H. Kazemi, Pseudo four-component and regioselective synthesis of 4-amino-3,5-dicyano-6-arylphthalates using triethylamine catalyst, Chin. Chem. Lett. 24 (2013) 497-499.

    25. [25]

      [25] P.N. Sable, S.G. Ganguly, P.N. Chaudhari, An efficient one-pot three-component synthesis and antimicrobial evaluation of tetra substituted thiophene derivatives, Chin. Chem. Lett. 25 (2014) 1099-1103.

    26. [26]

      [26] Z.Z. Tian, X.S. Shao, Z. Li, et al., Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification, J. Agric. Food Chem. 55 (2007) 2288-2292.

    27. [27]

      [27] T. Sugane, T. Tobe, W.Hamaguchi, et al., Atropisomeric 4-phenyl-4H-1,2,4-triazoles as selective glycine transporter 1 inhibitors, J. Med. Chem. 56 (2013) 5744-5756.

    28. [28]

      [28] J. Sauer, Diels-Alder-reactions part I: new preparative aspects, Angew. Chem., Int. Ed. Engl. 5 (1966) 211-230.

    29. [29]

      [29] J. Sauer, Diels-Alder reactions II: the reaction mechanism, Angew. Chem., Int. Ed. Engl. 6 (1967) 16-33.

  • 加载中
    1. [1]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    2. [2]

      Ruonan GuoHeng ZhangChangsheng GuoNingqing LvBeidou XiJian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413

    3. [3]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    4. [4]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    5. [5]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    6. [6]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    7. [7]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    8. [8]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    9. [9]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    10. [10]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

    11. [11]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    12. [12]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    13. [13]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

    14. [14]

      Gen ZhangYing GuLin LiFuli MaDan YueXiaoguang ZhouChungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110

    15. [15]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    16. [16]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    17. [17]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    18. [18]

      Xiaochun LiuGaoyan ChenXiaodong YueChaoyue WangXue-Xin ZhangXuecheng RanYingxiao ZongJunke WangXicun Wang . A novel N-stable Co2P nano-catalyst for the synthesis of quinoxalines by annulation of alkynes and 1,2-diaminobenzenes. Chinese Chemical Letters, 2025, 36(8): 110707-. doi: 10.1016/j.cclet.2024.110707

    19. [19]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    20. [20]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

Metrics
  • PDF Downloads(0)
  • Abstract views(1217)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return