Citation:
Jayant Sindhu, Harjinder Singh, J. M. Khurana, Chetan Sharma, K. R. Aneja. Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation[J]. Chinese Chemical Letters,
;2015, 26(1): 50-54.
doi:
10.1016/j.cclet.2014.09.006
-
A series of novel thiazolidinedione-triazole hybrids were synthesized by one pot reaction between thiazolidine-2,4-dione, substituted aryl aldehydes, propargyl bromide and substituted aryl azides using piperidine, CuSO4·5H2O and sodium ascorbate as catalysts in PEG-400 as a highly efficient and green media. These thiazolidinedione-triazole hybrids were subjected to in vitro antibacterial activity against four strains namely, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and antifungal activity against two fungal strains namely, Aspergillus niger and Aspergillus flavus.
-
-
-
[1]
[1] F.L. Gouveia, R.M.B. De Oliveira, T.B. De Oliveira, et al., Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-2-ones, Eur. J. Med. Chem. 44 (2009) 2038-2043.
-
[2]
[2] E.M. Guantai, K. Ncokazi, T.J. Egan, et al., Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds, Bioorg. Med. Chem. 18 (2010) 8243-8256.
-
[3]
[3] C.A. Fraga, Drug hybridization strategies: before or after lead identification? Expert Opin. Drug Discov. 4 (2009) 605-609.
-
[4]
[4] J.E. Biggs-Houck, A. Younai, J.T. Shaw, Recent advances in multicomponent reactions for diversity-oriented synthesis, Curr. Opin. Chem. Biol. 14 (2010) 371-382.
-
[5]
[5] L.A. Marcaurelle, M.A. Foley, The evolving role of molecular diversity in drug discovery, Curr. Opin. Chem. Biol. 14 (2010) 285-288.
-
[6]
[6] N. Dahan-Farkas, C. Langley, A.L. Rousseau, et al., 6-Substituted imidazo[1,2- a]pyridines: synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2, Eur. J. Med. Chem. 46 (2011) 4573-4583.
-
[7]
[7] (a) D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. Engl. 44 (2005) 1602-1634;
-
[8]
(b) C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug discovery ‘from xylocain to crixivan', Curr. Med. Chem. 10 (2003) 51-80;
-
[9]
(c) P. Salehi, D.I. MaGee, M. Dabiri, L. Torkian, J. Donahue, Combining clickmulticomponent reaction: one-pot synthesis of triazolyl methoxy-phenyl indazolo[ 2,1-b] phthalazine-trione derivatives, Mol. Divers. 16 (2012) 231-240;
-
[10]
(d) P. Salehi, M. Dabiri, M. Koohshari, S.K. Movahed, M. Bararjanian, One-pot synthesis of 1,2,3-triazole linked dihydropyrimidinones via Huisgen 1,3-dipolar/Biginelli cycloaddition, Mol. Divers. 15 (2011) 833-837;
-
[11]
(e) F.R. Charati, Efficient synthesis of functionalized hydroindoles via catalystfree multicomponent reactions of ninhydrin in water, Chin. Chem. Lett. 25 (2014) 169-171;
-
[12]
(f) Z. Hossaini, F.R. Charati, M.E. Moghadam, F.M. Kochaksaraee, Expeditious solvent-free synthesis of 1, 3-thiazolanes via multicomponent reactions, Chin. Chem. Lett. 25 (2014) 794-796.
-
[13]
[8] (a) J. Sindhu, H. Singh, J.M. Khurana, C. Sharma, K.R. Aneja, Multicomponent synthesis of novel 2-aryl-5-((1-aryl-1H-1,2,3-triazol-4-yl)methylthio)-1,3,4-oxadiazoles using CuI as catalyst and their antimicrobial evaluation, Aust. J. Chem. 66 (2013) 710-717;
-
[14]
(b) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines and their biological and photophysical studies, Aust. J. Chem. 66 (2013) 1088-1096;
-
[15]
(c) J. Sindhu, H. Singh, J.M. Khurana, A green, multicomponent, regio- and stereoselective 1,3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400, Mol. Divers. 18 (2014) 345-355.
-
[16]
[9] J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers, Polyethylene glycol and solutions of polyethylene glycol as green reaction media, Green Chem. 7 (2005) 64-82.
-
[17]
[10] P. Ferravoschi, A. Fiecchi, P. Grisenti, E. Santaniello, S. Trave, Polyethylene glycols as solvents for anionic activation: synthesis of thioacetates by means of potassium thioacetate in polyethylene glycol 400, Synth. Commun. 17 (1987) 1569- 1575.
-
[18]
[11] J.R. Blanton, The selective reduction of aldehydes using polyethylene glycol- sodium borohydride derivatives as phase transfer reagents, Synth. Commun. 27 (1997) 2093-2102.
-
[19]
[12] S. Chandrasekhar, Ch. Narsihmulu, S.S. Sultana, N.R.K. Reddy, Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis, application in the Heck reaction, Org. Lett. 4 (2002) 4399-4401.
-
[20]
[13] S. Chandrasekhar, Ch. Narsihmulu, S.S. Sultana, N.R.K. Reddy, Osmium tetroxide in poly(ethylene glycol) (PEG): a recyclable reaction medium for rapid asymmetric dihydroxylation under sharpless conditions, Chem. Commun. (2003) 1716- 1717.
-
[21]
[14] (a) V.V. Namboodiri, R.S. Varma, Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG), Green Chem. 3 (2001) 146-148;
-
[22]
(b) S. Gaddam, H.R. Kasireddy, K. Konkala, R. Katla, N.Y.V. Durga, Synthesis of Nsubstituted- 2-aminobenzothiazoles using nano copper oxide as a recyclable catalyst under ligand-free conditions, in reusable PEG-400 medium, Chin. Chem. Lett. 5 (2014) 732-736.
-
[23]
[15] A. Haimov, R. Neumann, Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation, Chem. Commun. (2002) 876-877.
-
[24]
[16] S. Chandrasekhar, Ch. Narsihmulu, G. Chandrasekhar, T. Shyamsundar, Pd/CaCO3 in liquid poly(ethylene glycol) (PEG): an easy and efficient recycle system for partial reduction of alkynes to cis-olefins under a hydrogen atmosphere, Tetrahedron Lett. 45 (2004) 2421-2423.
-
[25]
[17] S.R. Pattana, P. Kekareb, A. Patilc, A. Nikaljec, B.S. Kitturd, Studies on the synthesis of novel 2,4-thiazolidinedione derivatives with antidiabetic activity, Iran. J. Pharm. Sci. 5 (2009) 225-230.
-
[26]
[18] R. Ottana`, R. Maccari, M. Giglio, et al., Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications, Eur. J. Med. Chem. 46 (2011) 2797-2806.
-
[27]
[19] A. Andreani, M. Rambaldi, A. Locatelli, et al., Synthesis of lactams with potential cardiotonic activity, Eur. J. Med. Chem. 28 (1993) 825-829.
-
[28]
[20] C.D. Barros, A.A. Amato, T.B. Oliveira, et al., Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands, Bioorg. Med. Chem. 18 (2010) 3805-3811.
-
[29]
[21] Z. Beharry, M. Zemskova, S. Mahajan, et al., Novel benzylidene-thiazolidine-2,4- diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells, Mol. Cancer Ther. 8 (2009) 1473-1483.
-
[30]
[22] W.T. Sing, C.L. Lee, S.L. Yeo, S.P. Lim, M.M. Sim, Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor, Bioorg. Med. Chem. Lett. 11 (2001) 91-94.
-
[31]
[23] E.B. Grant, D. Guiadeen, E.Z. Baum, et al., The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors, Bioorg. Med. Chem. Lett. 10 (2000) 2179-2182.
-
[32]
[24] N.S. Cutshall, C. O'Day, M. Prezhdo, Rhodanine derivatives as inhibitors of JSP-1, Bioorg. Med. Chem. Lett. 15 (2005) 3374-3379.
-
[33]
[25] S.V. Sambasivarao, L.K. Soni, A.K. Gupta, P. Hanumantharao, Quantitative structure- activity analysis of 5-arylidene-2,4-thiazolidinediones as aldose reductase inhibitors, Bioorg. Med. Chem. Lett. 16 (2006) 512-520.
-
[34]
[26] R. Maccari, P. Paoli, R. Ottana, et al., 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases, Bioorg. Med. Chem. 15 (2007) 5137-5149.
-
[35]
[27] V.R. Avupati, R.P. Yejella, A. Akula, et al., Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents, Bioorg. Med. Chem. Lett. 22 (2012) 6442- 6450.
-
[36]
[28] J.D. Peuler, S.M. Phare, A.R. Lannussi, M.J. Hoderek, Differential inhibitory effects of antidiabetic drugs on arterial smooth muscle cell proliferation, Am. J. Hypertens. 9 (1996) 188-192.
-
[37]
[29] L.A. Dakin, M.H. Block, H. Chen, et al., Discovery of novel benzylidene-1,3- thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases, Bioorg. Med. Chem. Lett. 22 (2012) 4599-4604.
-
[38]
[30] C. Gill, G. Jadhav, M. Shaikh, et al., Clubbed [1-3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis, Bioorg. Med. Chem. Lett. 18 (2008) 6244-6247.
-
[39]
[31] F. de, C. da Silva, M.C.B.V. de Souza, I.I.P. Frugulhetti, et al., Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1, 2,3-triazole derivatives of carbohydrates, Eur. J. Med. Chem. 44 (2009) 373-383.
-
[40]
[32] N.G. Aher, V.S. Pore, N.N. Mishra, et al., Synthesis and antifungal activity of 1,2,3- triazole containing fluconazole analogues, Bioorg. Med. Chem. Lett. 19 (2009) 759-763.
-
[41]
[33] B.S. Holla, M. Mahalinga, M.S. Karthikeyan, et al., Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles, Eur. J. Med. Chem. 40 (2005) 1173-1178.
-
[42]
[34] M.S. Alam, J. Huang, F. Ozoe, F. Matsumura, Y. Ozoe, Synthesis, 3D-QSAR, and docking studies of 1-phenyl-1H-1,2,3-triazoles as selective antagonists for beta3 over alpha1beta2gamma2 GABA receptors, Bioorg. Med. Chem. 15 (2007) 5090- 5104.
-
[43]
[35] R. Périon, V. Ferrières, M.I. García-Moreno, et al., 1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors, Tetrahedron 61 (2005) 9118- 9128.
-
[44]
[36] A. Kamal, N. Shankaraiah, V. Devaiah, et al., Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click' chemistry: DNA-binding affinity and anticancer activity, Bioorg. Med. Chem. Lett. 18 (2008) 1468-1473.
-
[45]
[37] H.C. Kolb, K.B. Sharpless, The growing impact of click chemistry on drug discovery, Drug Discov. Today 8 (2003) 1128-1137.
-
[46]
[38] N.S. Vatmurge, B.G. Hazra, V.S. Pore, et al., Deshpande, synthesis and antimicrobial activity of beta-lactam-bile acid conjugates linked via triazole, Bioorg. Med. Chem. Lett. 18 (2008) 2043-2047.
-
[47]
[39] M. Whiting, J. Muldoon, Y.C. Lin, et al., Inhibitors of HIV-1 protease by using in situ click chemistry, Angew. Chem. Int. Ed. 45 (2006) 1435-1439.
-
[48]
[40] (a) J. Zhang, H. Zhang, W.X. Cai, et al., ‘Click' D(1) receptor agonists with a 5- HT(1A) receptor pharmacophore producing D(2) receptor activity, Bioorg. Med. Chem. 17 (2009) 4873-4880; (b) R. Jagasia, J.M. Holub, M. Bollinger, K. Kirshenbaum, M.G. Finn, Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition, J. Org. Chem. 74 (2009) 2964-2974.
-
[49]
[41] K. Kumar, S. Sagar, L. Esau, M. Kaur, V. Kumar, Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation, Eur. J. Med. Chem. 58 (2012) 153-159.
-
[50]
[42] (a) H. Singh, J. Sindhu, J.M. Khurana, Efficient, green and regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazoles in ionic liquid [bmim]BF4 and in taskspecific basic ionic liquid [bmim]OH, J. Iran. Chem. Soc. 10 (2013) 883-888;
-
[51]
(b) H. Singh, J. Sindhu, J.M. Khurana, Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU-H2O catalytic system, RSC Adv. 3 (2013) 22360-22366;
-
[52]
(c) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity, Eur. J. Med. Chem. 77 (2014) 145-154;
-
[53]
(d) H. Singh, S. Kumari, J.M. Khurana, A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4, Chin. Chem. Lett. 25 (2014) 1336-1340.
-
[54]
[43] N.D. Obushak, N.T. Pokhodylo, N.I. Pidlypnyi, V.S. Matiichuk, Synthesis of 1,2,4- and 1,3,4-oxadiazoles from 1-aryl-5-methyl-1H-1,2,3-triazole-4-carbonyl chlorides, Russ. J. Org. Chem. 44 (2008) 1522-1527.
-
[55]
[44] K.R. Aneja, C. Sharma, R. Joshi, Fungal infection of the ear: a common problem in the North Eastern part of Haryana, Int. J. Pediatr. Otorhinolaryngol. 74 (2010) 604-607.
-
[56]
[45] I. Ahmad, A.Z. Beg, Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens, J. Ethnopharmacol. 74 (2001) 113-123.
-
[57]
[46] J.M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother. 48 (2001) 5-16.
-
[58]
[47] National Committee for Clinical Laboratory Standards, Method for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standards, Villanova, PA, fifth ed., 2000.
-
[59]
[48] S.K.S. Al-Burtamani, M.O. Fatope, R.G. Marwah, A.K. Onifade, S.H. Al-Saidi, Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman, J. Ethnopharmocol. 96 (2005) 107-112.
-
[1]
-
-
-
[1]
Xiangrong Pan , Xixi Hou , Yuhang Du , Zhixin Pang , Shiyang He , Lan Wang , Jianxue Yang , Longfei Mao , Jianhua Qin , Haixia Wu , Baozhong Liu , Zhan Zhou , Lufang Ma , Chaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536
-
[2]
Yuyao Guan , Baoting Yu , Jun Ding , Tingting Sun , Zhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645
-
[3]
Hongwei Ding , Jingjing Yang , Yongchen Shuai , Di Wei , Xueliang Liu , Guiying Li , Lin Jin , Jianliang Shen . In situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286
-
[4]
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468
-
[5]
Xicheng Li , Dong Mo , Shoushan Hu , Meng Pan , Meng Wang , Tingyu Yang , Changxing Qu , Yujia Wei , Jianan Li , Hanzhi Deng , Zhongwu Bei , Tianying Luo , Qingya Liu , Yun Yang , Jun Liu , Jun Wang , Zhiyong Qian . A Pt@ZIF-8/ALN-ac/GelMA composite hydrogel with antibacterial, antioxidant, and osteogenesis for periodontitis. Chinese Chemical Letters, 2025, 36(9): 110674-. doi: 10.1016/j.cclet.2024.110674
-
[6]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[7]
Xiaoliu Liang , Chunliu Huang , Hui Liu , Hu Chen , Jiabao Shou , Hongwei Cheng , Gang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442
-
[8]
Haijun Shen , Yi Qiao , Chun Zhang , Yane Ma , Jialing Chen , Yingying Cao , Wenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283
-
[9]
Wen Zhong , Dan Zheng , Xukun Liao , Yadi Zhou , Yan Jiang , Ting Gao , Ming Li , Chengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448
-
[10]
Yueying Wang , Jianming Xiong , Linwei Xin , Yuanyuan Li , He Huang , Wenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003
-
[11]
Ruijun Song , Huixu Xie , Guiting Liu . Advances of MXene-based hydrogels for chronic wound healing. Chinese Chemical Letters, 2025, 36(7): 110442-. doi: 10.1016/j.cclet.2024.110442
-
[12]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[13]
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
-
[14]
Jiarong ZHU , Xiaohua ZHANG , Xinting XIONG , Xuliang NIE , Xiuying SONG , Miaomiao ZHANG , Dayong PENG , Xiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150
-
[15]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[16]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[17]
Yingyue ZHANG , Liuqing KANG , Yating YANG , Xiaofen GUAN , Wenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100
-
[18]
Bing Xie , Qi Jiang , Fang Zhu , Yaoyao Lai , Yueming Zhao , Wei He , Pei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508
-
[19]
Peipei CUI , Yawen ZHENG , Pan LI , Peiyan GUAN , Zhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152
-
[20]
Yun-Feng Liu , Hui-Fang Du , Ya-Hui Zhang , Zhi-Qin Liu , Xiao-Qian Qi , Du-Qiang Luo , Fei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1304)
- HTML views(25)
Login In
DownLoad: