Citation: Li-Xiang Zhang, Yu-Bin Zheng, Sheng-Lin Cai, Xiao-Hong Cao, Yao-Qun Li. Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient[J]. Chinese Chemical Letters, ;2015, 26(1): 43-46. doi: 10.1016/j.cclet.2014.08.001 shu

Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient

  • Corresponding author: Yao-Qun Li, 
  • Received Date: 11 April 2014
    Available Online: 18 July 2014

    Fund Project: We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21375111, 21127005,20975084) (Nos. 21375111, 21127005,20975084) the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20110121110011). (No. 20110121110011)

  • Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cellmembranes, herein, a fully abiotic, single glass conical nanopores energy-harvesting is demonstrated. Ion current rectification (ICR) in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. The maximum power output with the individual nanopore approaches 104 pW. This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants.
  • 加载中
    1. [1]

      [1] B. Kumar, S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy 1 (2012) 342-355.

    2. [2]

      [2] C. Xu, C.F. Pan, Y. Liu, Z.L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems, Nano Energy 1 (2012) 259-272.

    3. [3]

      [3] B.X. Xu, L. Liu, H. Lim, Y. Qiao, X. Chen, Harvesting energy from low-grade heat based on nanofluids, Nano Energy 1 (2012) 805-811.

    4. [4]

      [4] W. Guo, L.X. Cao, J.C. Xia, et al., Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater. 20 (2010) 1339-1344.

    5. [5]

      [5] Z.S. Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 6 (2006) 735-746.

    6. [6]

      [6] Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc. 35 (2004) 10850-10851.

    7. [7]

      [7] Z.S. Siwy, C.R. Martin, Tuning ion current rectification in synthetic nanotubes, Controlled Nanoscale Motion, vol. 711, Springer, Berlin, Heidelberg, 2007, pp. 349-365.

    8. [8]

      [8] M. Ali, B. Schiedt, K. Healy, R. Neumann,W. Ensinger, Modifying the surface charge of single track-etched conical nanopores in polyimide, Nanotechnology 8 (2008) 085713.

    9. [9]

      [9] Z. Siwy, I.D. Kosińska, A. Fuliński, C.R. Martin, Asymmetric diffusion through synthetic nanopores, Phys. Rev. Lett. 4 (2005), 048102/1-048102/4.

    10. [10]

      [10] R.Y. Chein, B.G. Chung, Numerical study of ionic current rectification through nonuniformly charged micro/nanochannel systems, J. Appl. Electrochem. 43 (2013) 1197-1206.

    11. [11]

      [11] W. Guo, Y. Tian, L. Jiang, Asymmetric ion transport through ion-channel-mimetic solid-state nanopores, Acc. Chem. Res. 46 (2013) 2834-2846.

    12. [12]

      [12] I.D. Kosinska, A. Fulinski, Asymmetric nanodiffusion, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 72 (1) (2005), 011201/1-011201/7.

    13. [13]

      [13] G.X. Li, X.Q. Lin, A glass nanopore electrode for single molecule detection, Chin. Chem. Lett. 21 (2010) 1115-1118.

    14. [14]

      [14] B. Vilozny, A.L. Wollenberg, P. Acis, et al., Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette, Nanoscale 5 (2013) 9214-9221.

    15. [15]

      [15] H.C. Zhang, X. Hou, L. Zeng, et al., Bio-inspired artificial single ion pump, J. Am. Chem. Soc. 43 (2013) 16102-16110.

    16. [16]

      [16] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997.

    17. [17]

      [17] J. Cervera, P. Ramirez, S. Mafe, P. Stroeve, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta 56 (2011) 4504-4511.

    18. [18]

      [18] L.X. Zhang, X.H. Cao, Y.B. Zheng, Y.Q. Li, Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification, Electrochem. Commun. (2010) 1249-1252.

    19. [19]

      [19] L.X. Zhang, S.L. Cai, Y.B. Zheng, X.H. Cao, Y.Q. Li, Smart homopolymer poly (2- (dimethylamino) ethyl methacrylate) modification to single glass conical nanopore channels: proton and thermo dual-stimuli actuated highly efficient iongating, Adv. Funct. Mater. 11 (2011) 2103-2107.

    20. [20]

      [20] Y.Q. Li, Y.B. Zheng, R.N. Zare, Electrical, optical, and docking properties of conical nanopores, ACS Nano 6 (2012) 993-997.

    21. [21]

      [21] B. Zhang, J. Galusha, P.G. Shiozawa, et al., Bench-top method for fabricating glasssealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size, Anal. Chem. 13 (2007) 4778-4787.

    22. [22]

      [22] X.H. Cao, L.X. Zhang, W.P. Cai, Y.Q. Li, Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode, Electrochem. Commun. 12 (2010) 540-543.

    23. [23]

      [23] L.X. Zhang, X.H. Cao, W.P. Cai, Y.Q. Li, Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels, J. Fluoresc. 5 (2011) 1865-1870.

    24. [24]

      [24] B. Zhang, Y.H. Zhang, H.S. White, Steady-state voltammetric response of the nanopore electrode, Anal. Chem. 2 (2006) 477-483.

    25. [25]

      [25] C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipette electrodes, Anal. Chem. 22 (1997) 4627-4633.

  • 加载中
    1. [1]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    2. [2]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    3. [3]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    4. [4]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    5. [5]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    6. [6]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    7. [7]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    8. [8]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    9. [9]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    10. [10]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    13. [13]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    14. [14]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    17. [17]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    18. [18]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    19. [19]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    20. [20]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

Metrics
  • PDF Downloads(0)
  • Abstract views(595)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return