Citation: Ayekpam Bimolini Devi, Dinesh Singh Moirangthem, Narayan Chandra Talukdar, M. Damayanti Devi, N. Rajen Singh, Meitram Niraj Luwang. Novel synthesis and characterization of CuO nanomaterials: Biological applications[J]. Chinese Chemical Letters, ;2014, 25(12): 1615-1619. doi: 10.1016/j.cclet.2014.07.014 shu

Novel synthesis and characterization of CuO nanomaterials: Biological applications

  • Corresponding author: Meitram Niraj Luwang, 
  • Received Date: 10 April 2014
    Available Online: 14 July 2014

  • CuO nanoparticles were synthesized at a relatively low temperature (80 ℃) for 2 h using polyethylene glycol-glycerol mixture which acts as a capping agent. A detailed characterization of the synthesized nanomaterials were performed utilizing X-ray diffraction (XRD), infra-red spectroscopy (IR), thermogravimetric analysis (TGA-DTA), transmission electron microscopy (TEM), photoluminescence (PL) by studying its crystalline phase, vibrational mode, thermal analysis, morphology and photoluminescence properties. The effect of annealing on the as-prepared nanoparticles were studied and compared with their corresponding bulk counterpart. The synthesized nanoparticles have been screened for in vitro cytotoxicity (IC50) studies against the human cervical adenocarcinoma cell line (HeLa) using MTT assay methods. The as-prepared nanoparticle inhibits the proliferation of this HeLa cell. The standard disc diffusion method has been used to study the antibacterial activity of the samples against the human pathogenic bacteria Escherichia coli (MTCC 729), Proteus mirabilis (MTCC 425) and Klebsiella pneumoniae subsp. pneumoniae (MTCC 432). The results have been compared with the positive control antibiotic gentamycin. The synthesized nanoparticles would provide a potential alternative to antibiotics for controlling some of the microorganisms causing urolithiasis.
  • 加载中
    1. [1]

      [1] R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, One dimensional metal oxide nanostructures: recent developments in synthesis, characterization and applications, Adv. Funct. Mater. 22 (2012) 3326-3370.

    2. [2]

      [2] H. Zhu, F. Zhao, L.Q. Pan, et al., Structural and magnetic properties of Mn-doped CuO thin films, J. Appl. Phys. 101 (2007) 09H111.

    3. [3]

      [3] B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

    4. [4]

      [4] M.N. Luwang, Microemulsion mediated synthesis of triangular SnO2 nanoparticles: luminescence application, Appl. Surf. Sci. 290 (2014) 332-339.

    5. [5]

      [5] P.L. Singh, M.N. Luwang, S.K. Srivastava, Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles, New J. Chem. 38 (2014) 115-121.

    6. [6]

      [6] R.T. Stuart, P. Pattanasattayavong, T.D. Anthopoulos, Solution processable metal oxide semiconductors for thin film transistor applications, Chem. Soc. Rev. 42 (2013) 6910-6923.

    7. [7]

      [7] V. Javier, Molecular chemistry to the fore: new insights into the fascinating world of photoactive colloidal semiconductor nanocrystals, J. Phys. Chem. Lett. 4 (2013) 653-668.

    8. [8]

      [8] W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281 (1998) 2016-2018.

    9. [9]

      [9] C. Chouly, D. Pouliquen, I. Lucet, J.J.L. Jeune, P. Jallet, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, J. Microencapsulation 13 (1996) 245-255.

    10. [10]

      [10] P. Couvreur, C. Dubernet, F. Puisieux, Controlled drug delivery with nanoparticles: current possibilities and future trends, Eur. J. Pharm. Biopharm. 41 (1994) 2-13.

    11. [11]

      [11] Z.K. Zheng, B.B. Huang, Z.Y. Wang, et al., Crystal faces of Cu2O and their stabilities in photocatalytic reactions, J. Phys. Chem. C 113 (2009) 14448-14453.

    12. [12]

      [12] J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater. 18 (2006) 867-871.

    13. [13]

      [13] G. Ren, D. Hu, E.W.C. Cheng, et al., Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents 33 (2009) 587-590.

    14. [14]

      [14] K. Donaldson, V. Stone, C.L. Tran, W. Kreyling, P.J.A. Borm, Nanotoxicology, Occup. Environ. Med. 61 (2004) 727-728.

    15. [15]

      [15] N. Lewinski, V. Colvin, R. Drezek, Cytotoxicity of nanoparticles, Small 4 (2008) 26-49.

    16. [16]

      [16] G. Oberdö rster, E. Oberdö rster, J. Oberdö rster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823-839.

    17. [17]

      [17] M.N. Luwang, R.S. Ningthoujam, Jagannath, S.K. Srivastava, R.K. Vatsa, Effects of Ce3+ co-doping and annealing on phase transformation and luminescence of Eu3+ doped YPO4 nanorods: D2O solvent effect, J. Am. Chem. Soc. 132 (2010) 2759-2768.

    18. [18]

      [18] M.N. Luwang, R.S. Ningthoujam, S.K. Srivastava, R.K. Vatsa, Disappearance and recovery of luminescence in Bi3+, Eu3+ co-doped YPO4 nanoparticles due to presence of water molecules up to 800 ℃, J. Am. Chem. Soc. 133 (2011) 2998-3004.

    19. [19]

      [19] S.S. Banerjee, N. Aher, R. Patil, J. Khandare, Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications, J. Drug Deliv. 2012 (2012) 103973.

    20. [20]

      [20] R.J. Hong, J.B. Huang, H.B. He, Z.X. Fan, J.D. Shao, Influence of different posttreatments on the structure and optical properties of zinc oxide thin films, Appl. Surf. Sci. 242 (2005) 346-352.

    21. [21]

      [21] D.H. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band-gap energies of sol-gel-derived SrTiO3 thin films, Appl. Phys. Lett. 79 (2001) 3767-3772.

    22. [22]

      [22] K.K. Dey, A. Kumar, R. Shanker, et al., Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices, RSC Adv. 2 (2012) 1387-1403.

    23. [23]

      [23] P.H. Huh, J.Y. Yang, S.C. Kim, Facile formation of nanostructured 1D and 2D arrays of CuO islands, RSC Adv. 2 (2012) 5491-5494.

    24. [24]

      [24] M.N. Luwang, S. Chandra, D. Bahadur, S.K. Srivastava, Dendrimer facilitated synthesis of multifunctional lanthanide based hybrid nanomaterials for biological applications, J. Mater. Chem. 22 (2012) 3395-3403.

    25. [25]

      [25] T. Sun, Y. Yan, Y. Zhao, F. Guo, G. Jiang, Copper oxide nanoparticles induce autophagic cell death in A549 cells, PLoS ONE 7 (2012) e43442.

    26. [26]

      [26] A. Bergmann, Autophagy and cell death: no longer at odds, Cell 131 (2007) 1032-1034.

    27. [27]

      [27] R.Q. Hang, A. Gao, X.B. Huang, et al., Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes, J. Biomed. Mater. Res. Part A 102A (2014) 1850-1858.

    28. [28]

      [28] D.E. Corpet, G. Parnaud, M. Delverdier, G. Peiffer, S. Tache, Consistent and fast inhibition of colon carcinogenesis by polyethylene glycol in mice and rats given various carcinogens, Cancer Res. 60 (2000) 3160-3164.

    29. [29]

      [29] E. Dorval, J.M. Jankowski, J.P. Barbieux, et al., Polyethylene glycol and prevalence of colorectal adenomas, Gastroenterol. Clin. Biol. 30 (2006) 1196-1199.

    30. [30]

      [30] H.K. Roy, D.P. Kunte, J.L. Koetsier, et al., Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of snail/β-catenin signaling, Mol. Cancer Ther. 5 (2006) 2060-2069.

    31. [31]

      [31] S. Jun, K. Emiko, K. Fumio, et al., Detection of active oxygen generated from ceramic powders having antibacterial activity, J. Chem. Eng. Jpn. 29 (1996) 627-633.

    32. [32]

      [32] A. Guy, L. Anat, D. Rachel, et al., Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct. Mater. 19 (2009) 842-852.

    33. [33]

      [33] Topley and Wilson's Principles of Bacteriology, Virology and Immunity, Williams and Wilkins, Baltimore, 1975, pp. 859-900.

    34. [34]

      [34] E. Miftode, O. Dorneanu, D. Leca, et al., Antimicrobial resistance profile of E. coli and Klebsiella spp. from urine in the Infectious Diseases Hospital Iasi, Rev. Med. Chir. Soc. Med. Nat. Iasi 113 (2008) 478-482.

    35. [35]

      [35] G. Ang, R. Hang, X. Huang, et al., The effect of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts, Biomaterials 35 (2014) 4223-4235.

    36. [36]

      [36] Y.E. Lin, R.D. Vidic, J.E. Stout, C.A. McCartney, V.L. Yu, Inactivation of Mycobacterium avium by copper and silver ions, Water Res. 32 (1998) 1997-2000.

    37. [37]

      [37] J.H. Kim, H. Cho, S.E. Ryu, M.U. Choi, Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion, Arch. Biochem. Biophys. 382 (2000) 72-80.

    38. [38]

      [38] S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med. 18 (1995) 321-336.

  • 加载中
    1. [1]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    2. [2]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    5. [5]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    6. [6]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    7. [7]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    8. [8]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    9. [9]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    10. [10]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    11. [11]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    12. [12]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    13. [13]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    14. [14]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    15. [15]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    16. [16]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    17. [17]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    20. [20]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

Metrics
  • PDF Downloads(0)
  • Abstract views(492)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return