Citation:
Mei Li, Min Shao, Ling-Yu Li, Si-Hua Lu, Wen-Tai Chen, Chen Wang. Quantifying the ambient formaldehyde sources utilizing tracers[J]. Chinese Chemical Letters,
;2014, 25(11): 1489-1491.
doi:
10.1016/j.cclet.2014.07.001
-
Formaldehyde (HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measures. The objective of this work is to distinguish between primary and secondary sources of HCHO. Based on about one month of online measurements in winter in Ziyang, Sichuan, the multi-linear regression analysis of ambient concentrations of HCHO and possible tracers (acetonitrile, propane and peroxyacetyl nitrate) was performed. The results show that during winter in Ziyang, biomass burning contributed an average of 53.2% to ambient HCHO levels, while secondary processes contributed about 30.1%, and vehicular sources accounted for 7.1%.
-
Keywords:
- Formaldehyde,
- Sources,
- Tracers,
- Multi-linear regression
-
-
-
[1]
[1] M. Possanzini, V. Dipalo, A. Cecinato, Evaluation of lower carbonyls and photochemical oxidants by HPLC-UV and HRGC-MS, Atmos. Environ. 37 (2003) 1309- 1316.
-
[2]
[2] P.B. Shepson, D.R. Hastie, H.I. Schiff, et al., Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central Ontario, Atmos. Environ. A 25 (1991) 2001-2015.
-
[3]
[3] M. Possanzini, V.D. Palo, A. Cecinato, Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air, Atmos. Environ. 36 (2002) 3195- 3201.
-
[4]
[4] Y.C. Lin, J.J. Schwab, K.L. Demerjian, Summertime formaldehyde observations in New York city: ambient levels, sources and its contribution to HOx radicals, J. Geophys. Res. 117 (2012) D08305.
-
[5]
[5] S. Friedfeld, M. Fraser, K. Ensor, et al., Statistical analysis of primary and secondary atmospheric formaldehyde, J. Atmos. Environ. 36 (2002) 4767-4775.
-
[6]
[6] Y. Li, M. Shao, S.H. Lu, C.C. Chang, P.K. Dasgupta, Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic Games, J. Atmos. Environ. 44 (2010) 2632-2639.
-
[7]
[7] J.A. de Gouw, A.M. Middlebrook, C. Warneke, et al., Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002, J. Geophys. Res. Atmos. 110 (2005) D16.
-
[8]
[8] B. Yuan, M. Shao, J. de Gouw, D.D. Parrish, et al., Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis, J. Geophys. Res. 117 (2012) D24302.
-
[9]
[9] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error-estimates of data values, Environmetrics 5 (1994) 111-126.
-
[10]
[10] B. Buzcu Guven, E.P. Olaguer, Ambient formaldehyde source attribution in Houston during TexAQSⅡ and TRAMP, Atmos. Environ. 45 (2011) 4272-4280.
-
[11]
[11] J.Z. Li, P.K. Dasgupta, W. Luke, Measurement of gaseous and aqueous trace formaldehyde: revisiting the pentanedione reaction and field applications, Anal. Chim. Acta 531 (2005) 51-68.
-
[12]
[12] Q. Wang, Variations and Sources Apportionment of Ambient Carbonyl Compounds, Master Thesis, Peking University, 2011.
-
[13]
[13] Y.J. Zhang, Y.J. Mu, J.F. Liu, A. Mellouki, Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China, J. Environ. Sci. 24 (2012) 124-130.
-
[14]
[14] X.B. Pang, Y.J. Mu, Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air, Atmos. Environ. 40 (2006) 6313-6320.
-
[15]
[15] H. Lü , Q.Y. Cai, S. Wen, Y. Chi, S. Guo, Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere, Sci. Total. Environ. 408 (2010) 3523-3529.
-
[16]
[16] J. Huang, Y.L. Feng, J. Li, et al., Characteristics of carbonyl compounds in ambient air of Shanghai, China, J. Atmos. Chem. 61 (2008) 1-20.
-
[17]
[17] S.G. Moussa, M. El-Fadel, N.A. Saliba, Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon, Atmos. Environ. 40 (2006) 2459-2468.
-
[18]
[18] B. Rappenglü ck, P.K. Dasgupta, M. Leuchner, Q. Li, Formaldehyde and its relation to CO, PAN, and SO2 in the Houston-Galveston airshed, Atmos. Chem. Phys. 10 (2010) 2413-2424.
-
[19]
[19] R.J. Weber, A.P. Sullivan, R.E. Peltier, et al., A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res. 112 (2007) D13302.
-
[20]
[20] A.R. Garcia, R. Volkamer, L.T. Molina, M.J. Molina, Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers, Atmos. Chem. Phys. 6 (2006) 4545-4557.
-
[21]
[21] J.A. de Gouw, C. Warneke, D.D. Parrish, et al., Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere, J. Geophys. Res. 108 (2003) D11.
-
[1]
-
-
-
[1]
Huan Ye , Ying Yang , Lirong Jiang , Taotao Zhe , Junchao Xu , Lintao Zeng . An intelligent sensing platform for discrimination of formaldehyde and nitrite in food. Chinese Chemical Letters, 2025, 36(11): 110840-. doi: 10.1016/j.cclet.2025.110840
-
[2]
Quanxing Mao , Zhengliang Wang , Zhinan Hu , Ziqi Yang , Hui Li , Yali Yao , Zijun Yong , Tianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499
-
[3]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[4]
Siyuan You , Rui Li , Haoyun Lu , Lifei Hou , Xing Xu , Yanan Shang . Modulation of the structures and properties of iron-carbon composites by different small molecular carbon sources for Fenton-like reactions. Chinese Chemical Letters, 2025, 36(9): 110955-. doi: 10.1016/j.cclet.2025.110955
-
[5]
Changzhu Huang , Wei Dai , Shimao Deng , Yixin Tian , Xiaolin Liu , Jia Lin , Hong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429
-
[6]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[7]
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
-
[8]
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
-
[9]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[10]
Luyun Zhang , Ding Liu , Huri Piao , Zhenhua Jia , Fen-Er Chen . A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes. Chinese Chemical Letters, 2025, 36(7): 110640-. doi: 10.1016/j.cclet.2024.110640
-
[11]
Yan-Cui Wen , Jia-Cheng Hou , Qian Zhou , Sheng-Hua Wang , Jun Jiang , Zi Yang , Hai-Tao Zhu , Zu-Li Wang , Wei-Min He . Linear paired electrolysis enables redox-neutral benzylation of N-heteroarenes with benzyl halides using ion resin as the recyclable electrolyte. Chinese Chemical Letters, 2025, 36(12): 111795-. doi: 10.1016/j.cclet.2025.111795
-
[12]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[13]
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
-
[14]
Shifang Song , Chenyu Wu , Li Zhang , Dezhi Yang , Yang Lu , Zhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911
-
[15]
Aoran LIU , Rui LI , Zongyao WANG , Penghui SHANG , Jiawei WAN , Dan WANG . Hollow multi-shelled structure materials for catalytic applications. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036
-
[16]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[17]
Huaran Zhang , Yuting Huang , Yingjie Tang , Dekun Kong , Yi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968
-
[18]
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
-
[19]
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
-
[20]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1245)
- HTML views(14)
Login In
DownLoad: