Citation: Mei Li, Min Shao, Ling-Yu Li, Si-Hua Lu, Wen-Tai Chen, Chen Wang. Quantifying the ambient formaldehyde sources utilizing tracers[J]. Chinese Chemical Letters, ;2014, 25(11): 1489-1491. doi: 10.1016/j.cclet.2014.07.001 shu

Quantifying the ambient formaldehyde sources utilizing tracers

  • Corresponding author: Mei Li,  Min Shao, 
  • Received Date: 18 March 2014
    Available Online: 19 June 2014

  • Formaldehyde (HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measures. The objective of this work is to distinguish between primary and secondary sources of HCHO. Based on about one month of online measurements in winter in Ziyang, Sichuan, the multi-linear regression analysis of ambient concentrations of HCHO and possible tracers (acetonitrile, propane and peroxyacetyl nitrate) was performed. The results show that during winter in Ziyang, biomass burning contributed an average of 53.2% to ambient HCHO levels, while secondary processes contributed about 30.1%, and vehicular sources accounted for 7.1%.
  • 加载中
    1. [1]

      [1] M. Possanzini, V. Dipalo, A. Cecinato, Evaluation of lower carbonyls and photochemical oxidants by HPLC-UV and HRGC-MS, Atmos. Environ. 37 (2003) 1309- 1316.

    2. [2]

      [2] P.B. Shepson, D.R. Hastie, H.I. Schiff, et al., Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central Ontario, Atmos. Environ. A 25 (1991) 2001-2015.

    3. [3]

      [3] M. Possanzini, V.D. Palo, A. Cecinato, Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air, Atmos. Environ. 36 (2002) 3195- 3201.

    4. [4]

      [4] Y.C. Lin, J.J. Schwab, K.L. Demerjian, Summertime formaldehyde observations in New York city: ambient levels, sources and its contribution to HOx radicals, J. Geophys. Res. 117 (2012) D08305.

    5. [5]

      [5] S. Friedfeld, M. Fraser, K. Ensor, et al., Statistical analysis of primary and secondary atmospheric formaldehyde, J. Atmos. Environ. 36 (2002) 4767-4775.

    6. [6]

      [6] Y. Li, M. Shao, S.H. Lu, C.C. Chang, P.K. Dasgupta, Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic Games, J. Atmos. Environ. 44 (2010) 2632-2639.

    7. [7]

      [7] J.A. de Gouw, A.M. Middlebrook, C. Warneke, et al., Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002, J. Geophys. Res. Atmos. 110 (2005) D16.

    8. [8]

      [8] B. Yuan, M. Shao, J. de Gouw, D.D. Parrish, et al., Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis, J. Geophys. Res. 117 (2012) D24302.

    9. [9]

      [9] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error-estimates of data values, Environmetrics 5 (1994) 111-126.

    10. [10]

      [10] B. Buzcu Guven, E.P. Olaguer, Ambient formaldehyde source attribution in Houston during TexAQSⅡ and TRAMP, Atmos. Environ. 45 (2011) 4272-4280.

    11. [11]

      [11] J.Z. Li, P.K. Dasgupta, W. Luke, Measurement of gaseous and aqueous trace formaldehyde: revisiting the pentanedione reaction and field applications, Anal. Chim. Acta 531 (2005) 51-68.

    12. [12]

      [12] Q. Wang, Variations and Sources Apportionment of Ambient Carbonyl Compounds, Master Thesis, Peking University, 2011.

    13. [13]

      [13] Y.J. Zhang, Y.J. Mu, J.F. Liu, A. Mellouki, Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China, J. Environ. Sci. 24 (2012) 124-130.

    14. [14]

      [14] X.B. Pang, Y.J. Mu, Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air, Atmos. Environ. 40 (2006) 6313-6320.

    15. [15]

      [15] H. Lü , Q.Y. Cai, S. Wen, Y. Chi, S. Guo, Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere, Sci. Total. Environ. 408 (2010) 3523-3529.

    16. [16]

      [16] J. Huang, Y.L. Feng, J. Li, et al., Characteristics of carbonyl compounds in ambient air of Shanghai, China, J. Atmos. Chem. 61 (2008) 1-20.

    17. [17]

      [17] S.G. Moussa, M. El-Fadel, N.A. Saliba, Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon, Atmos. Environ. 40 (2006) 2459-2468.

    18. [18]

      [18] B. Rappenglü ck, P.K. Dasgupta, M. Leuchner, Q. Li, Formaldehyde and its relation to CO, PAN, and SO2 in the Houston-Galveston airshed, Atmos. Chem. Phys. 10 (2010) 2413-2424.

    19. [19]

      [19] R.J. Weber, A.P. Sullivan, R.E. Peltier, et al., A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res. 112 (2007) D13302.

    20. [20]

      [20] A.R. Garcia, R. Volkamer, L.T. Molina, M.J. Molina, Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers, Atmos. Chem. Phys. 6 (2006) 4545-4557.

    21. [21]

      [21] J.A. de Gouw, C. Warneke, D.D. Parrish, et al., Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere, J. Geophys. Res. 108 (2003) D11.

  • 加载中
    1. [1]

      Huan YeYing YangLirong JiangTaotao ZheJunchao XuLintao Zeng . An intelligent sensing platform for discrimination of formaldehyde and nitrite in food. Chinese Chemical Letters, 2025, 36(11): 110840-. doi: 10.1016/j.cclet.2025.110840

    2. [2]

      Quanxing MaoZhengliang WangZhinan HuZiqi YangHui LiYali YaoZijun YongTianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Siyuan YouRui LiHaoyun LuLifei HouXing XuYanan Shang . Modulation of the structures and properties of iron-carbon composites by different small molecular carbon sources for Fenton-like reactions. Chinese Chemical Letters, 2025, 36(9): 110955-. doi: 10.1016/j.cclet.2025.110955

    5. [5]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    8. [8]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    9. [9]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    10. [10]

      Luyun ZhangDing LiuHuri PiaoZhenhua JiaFen-Er Chen . A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes. Chinese Chemical Letters, 2025, 36(7): 110640-. doi: 10.1016/j.cclet.2024.110640

    11. [11]

      Yan-Cui WenJia-Cheng HouQian ZhouSheng-Hua WangJun JiangZi YangHai-Tao ZhuZu-Li WangWei-Min He . Linear paired electrolysis enables redox-neutral benzylation of N-heteroarenes with benzyl halides using ion resin as the recyclable electrolyte. Chinese Chemical Letters, 2025, 36(12): 111795-. doi: 10.1016/j.cclet.2025.111795

    12. [12]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    13. [13]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    14. [14]

      Shifang SongChenyu WuLi ZhangDezhi YangYang LuZhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911

    15. [15]

      Aoran LIURui LIZongyao WANGPenghui SHANGJiawei WANDan WANG . Hollow multi-shelled structure materials for catalytic applications. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2039-2053. doi: 10.11862/CJIC.20250036

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    18. [18]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    19. [19]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    20. [20]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

Metrics
  • PDF Downloads(0)
  • Abstract views(1245)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return