Citation: Dong-Jun Fu, Yu Jin, Mu-Qing Xie, Ya-Jing Ye, Dong-Dong Qin, Kai-Yan Lou, Yan-Zuo Chen, Feng Gao. Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity[J]. Chinese Chemical Letters, ;2014, 25(11): 1435-1440. doi: 10.1016/j.cclet.2014.06.027 shu

Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity

  • Corresponding author: Feng Gao, 
  • Received Date: 24 March 2014
    Available Online: 5 June 2014

  • The objective of this study was to investigate the potential of methoxy polyethylene glycol (mPEG) grafted chitosan (mPEG-g-CS) to be used as a drug carrier. mPEG-g-CS was successfully synthesized by one-step method with formaldehyde. The substitution degree of mPEG on chitosan was calculated by elemental analysis and was found to be (3.23±0.25)%. mPEG-g-CS self-assembled micelles were prepared by ultrasonic method with the controlled size of 178.5-195.1 nm and spherical morphology. Stable dispersion of the micelles was formed with the zeta potential of 2.3-30.2 mV. 5-Fluorouracil (5-FU), an anticancer chemotherapy drug, was used as a model drug to evaluate the efficiency of the new drug delivery carrier. The loading efficiency of 5-FU was (4.01±0.03)%, and the drug-loaded mPEG-g-CS self-assembled micelle showed a controlled-release effect. In summary, the mPEG-g-CS self-assembled micelle is proved to be a promising carrier with controlled particle size and controlled-release effect. Therefore, it has great potential for the application as 5-FU carriers for effective anti-tumor activity.
  • 加载中
    1. [1]

      [1] O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery, ACS Nano 3 (2009) 16-20.

    2. [2]

      [2] T. Ngawhirunpat, N. Wonglertnirant, P. Opanasopit, et al., Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin, Colloids Surf. B: Biointerfaces 74 (2009) 253-259.

    3. [3]

      [3] X.H. Peng, L. Zhang, Self-assembled micelles of N-phthaloyl-carboxymethy chitosan for drug delivery, Colloids Surf. A: Physicochem. Eng. Asp. 337 (2009) 21-25.

    4. [4]

      [4] G. Gaucher, M.H. Dufresne, V.P. Sant, et al., Block copolymer micelles: preparation, characterization and application in drug delivery, J. Control. Release 109 (2005) 169-188.

    5. [5]

      [5] A.A. Sunil, N.M. Nadagouda, M.A. Tejraj, Recent advances on chitosan-based micro- and nanoparticles in drug delivery, J. Control. Release 100 (2004) 5-28.

    6. [6]

      [6] Z.T. Yuan, Y.J. Ye, F. Gao, et al., Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release, Int. J. Pharm. 446 (2013) 191-198.

    7. [7]

      [7] S.S. Gao, J. Sun, F. Gao, et al., Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles, Int. J. Pharm. 427 (2012) 410-416.

    8. [8]

      [8] Y. Sun, L. Gu, Y. Gao, Preparation and characterization of 5-fluorouracil loaded chitosan microspheres by a two-step solidification method, Chem. Pharm. Bull. 58 (2010) 891-895.

    9. [9]

      [9] Q. Gan, T. Wang, Chitosan nanoparticle as protein delivery carrier - systematic examination of fabrication conditions for efficient loading and release, Colloids Surf. B: Biointerfaces 59 (2007) 24-34.

    10. [10]

      [10] A.W. Wu, B.B. Wu, J.M. Wu, et al., Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein, Chin. Chem. Lett. 20 (2009) 79-83.

    11. [11]

      [11] X.Y. Kong, X.Y. Li, X.H. Wang, et al., Synthesis and characterization of a novel mPEG-chitosan diblock copolymer and self-assembly of nanoparticles, Carbohydr. Polym. 79 (2010) 170-175.

    12. [12]

      [12] A. Miwa, A. Ishibe, M. Nakano, et al., Development of novel chitosan derivatives as micellar carriers of taxol, Pharm. Res. 15 (1998) 1844-1850.

    13. [13]

      [13] C. Zhang, P. Qineng, H.J. Zhang, Self-assembly and characterization of paclitaxelloaded N-octyl-O-sulfate chitosan micellar system, Colloids Surf. B: Biointerfaces 39 (2004) 69-75.

    14. [14]

      [14] D.W. Zhu, J.G. Bo, K.D. Yao, et al., Synthesis of N-methylene phosphonic chitosan (NMPCS) and its potential as gene carrier, Chin. Chem. Lett. 18 (2007) 1407-1410.

    15. [15]

      [15] P. Chan, M. Kurisawa, J.E. Chung, et al., Synthesis and characterization of chitosang- poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery, Biomaterials 28 (2007) 540-549.

    16. [16]

      [16] A.J. Dong, M.H. Feng, H.Y. Qi, et al., Synthesis and properties of O-carboxymethyl chitosan/methoxy poly (ethylene glycol) graft copolymers, J. Mater. Sci. Mater. Med. 19 (2008) 869-876.

    17. [17]

      [17] S.Y. Zhu, F. Qian, Y. Zhang, et al., Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticle, Eur. Polym. J. 43 (2007) 2244-2253.

    18. [18]

      [18] A.R. Kulkarni, Y.H. Lin, H.F. Liang, et al., A novel method for the preparation of nanoaggregates of methoxy polyethyleneglycol linked chitosan, J. Nanosci. Nanotechnol. 6 (2006) 2867-2873.

    19. [19]

      [19] T. Peng, Y. Li, D. Ahn, et al., Synthesis and characterization of pH-responsive poly (2-hydroxyethyl aspartamide)-g-poly (b-amino ester) graft copolymer micelles as potential drug carriers, Macromol. Res. 21 (2013) 400-405.

  • 加载中
    1. [1]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    2. [2]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    3. [3]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    4. [4]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    7. [7]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    8. [8]

      Weiwei LiuYu LiuZhaoyan TianZhaohan WangHui LiuSongqin LiuYafeng Wu . Online detecting living cells released TNF-α and studying intercellular communication using SuperDNA self-assembled conical nanochannel. Chinese Chemical Letters, 2025, 36(5): 110561-. doi: 10.1016/j.cclet.2024.110561

    9. [9]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

    12. [12]

      Lian JinJuan ZhangLibo NieYan DengGhulam Jilany KhanaNongyue He . Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases. Chinese Chemical Letters, 2025, 36(10): 110774-. doi: 10.1016/j.cclet.2024.110774

    13. [13]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    14. [14]

      Baoqi WuRongzhi TangZhi-Wei LiFeng LinZongyu SunHuanyu XiaLin JiangYu Tan . Selective encapsulation of azo compounds by tetracationic cyclophane in water and photo-controlled reversible release. Chinese Chemical Letters, 2025, 36(9): 110896-. doi: 10.1016/j.cclet.2025.110896

    15. [15]

      Chenkai YangXiaoling PanWeiguang ZhaoZhiwen QiuLei HeCong WuAng LiZhengnan HuangYilin YanShengzhou LiZhuofan NanXiangqian CaoBing ShenWei Li . Intratumoral photo-controlled antigens burst release for synergistic immunotherapy by bio-membrane and organic membrane coated dual-functional nanoparticles. Chinese Chemical Letters, 2025, 36(9): 110740-. doi: 10.1016/j.cclet.2024.110740

    16. [16]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    17. [17]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    18. [18]

      Qian ChenAnyang ShenTaotao HuangXinya HanJian ZhangHui JiangRenyong LiuYong PanKui Zhang . Ultrasensitive and selective detection of chemical nerve agent simulants based on naphthalimide functionalized chitosan as fluorescent nanofibers. Chinese Chemical Letters, 2025, 36(7): 110331-. doi: 10.1016/j.cclet.2024.110331

    19. [19]

      Aijia ZhangGuiyuan ZhaoGuangli XiangRui ChenYu DongQijie DiaoJialin WangXiaohui LinWenxuan ZengTianze JiangJun WuXia Zhao . Barnacle-inspired chitosan glycerin gel for skin protection and wound healing in harsh environments. Chinese Chemical Letters, 2025, 36(8): 110767-. doi: 10.1016/j.cclet.2024.110767

    20. [20]

      Xing CaoXinyu TianYuanyuan HuangLiping ZhangYanpeng NiYu-Zhong Wang . H3PO3-protonated chitosan enabling flame-retardant and antibacterial PVA composite films with high strength and toughness through multiple H-bonds and interlocking interfaces. Chinese Chemical Letters, 2025, 36(11): 111382-. doi: 10.1016/j.cclet.2025.111382

Metrics
  • PDF Downloads(0)
  • Abstract views(1307)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return