Citation:
Dong-Jun Fu, Yu Jin, Mu-Qing Xie, Ya-Jing Ye, Dong-Dong Qin, Kai-Yan Lou, Yan-Zuo Chen, Feng Gao. Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity[J]. Chinese Chemical Letters,
;2014, 25(11): 1435-1440.
doi:
10.1016/j.cclet.2014.06.027
-
The objective of this study was to investigate the potential of methoxy polyethylene glycol (mPEG) grafted chitosan (mPEG-g-CS) to be used as a drug carrier. mPEG-g-CS was successfully synthesized by one-step method with formaldehyde. The substitution degree of mPEG on chitosan was calculated by elemental analysis and was found to be (3.23±0.25)%. mPEG-g-CS self-assembled micelles were prepared by ultrasonic method with the controlled size of 178.5-195.1 nm and spherical morphology. Stable dispersion of the micelles was formed with the zeta potential of 2.3-30.2 mV. 5-Fluorouracil (5-FU), an anticancer chemotherapy drug, was used as a model drug to evaluate the efficiency of the new drug delivery carrier. The loading efficiency of 5-FU was (4.01±0.03)%, and the drug-loaded mPEG-g-CS self-assembled micelle showed a controlled-release effect. In summary, the mPEG-g-CS self-assembled micelle is proved to be a promising carrier with controlled particle size and controlled-release effect. Therefore, it has great potential for the application as 5-FU carriers for effective anti-tumor activity.
-
-
-
[1]
[1] O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery, ACS Nano 3 (2009) 16-20.
-
[2]
[2] T. Ngawhirunpat, N. Wonglertnirant, P. Opanasopit, et al., Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin, Colloids Surf. B: Biointerfaces 74 (2009) 253-259.
-
[3]
[3] X.H. Peng, L. Zhang, Self-assembled micelles of N-phthaloyl-carboxymethy chitosan for drug delivery, Colloids Surf. A: Physicochem. Eng. Asp. 337 (2009) 21-25.
-
[4]
[4] G. Gaucher, M.H. Dufresne, V.P. Sant, et al., Block copolymer micelles: preparation, characterization and application in drug delivery, J. Control. Release 109 (2005) 169-188.
-
[5]
[5] A.A. Sunil, N.M. Nadagouda, M.A. Tejraj, Recent advances on chitosan-based micro- and nanoparticles in drug delivery, J. Control. Release 100 (2004) 5-28.
-
[6]
[6] Z.T. Yuan, Y.J. Ye, F. Gao, et al., Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release, Int. J. Pharm. 446 (2013) 191-198.
-
[7]
[7] S.S. Gao, J. Sun, F. Gao, et al., Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles, Int. J. Pharm. 427 (2012) 410-416.
-
[8]
[8] Y. Sun, L. Gu, Y. Gao, Preparation and characterization of 5-fluorouracil loaded chitosan microspheres by a two-step solidification method, Chem. Pharm. Bull. 58 (2010) 891-895.
-
[9]
[9] Q. Gan, T. Wang, Chitosan nanoparticle as protein delivery carrier - systematic examination of fabrication conditions for efficient loading and release, Colloids Surf. B: Biointerfaces 59 (2007) 24-34.
-
[10]
[10] A.W. Wu, B.B. Wu, J.M. Wu, et al., Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein, Chin. Chem. Lett. 20 (2009) 79-83.
-
[11]
[11] X.Y. Kong, X.Y. Li, X.H. Wang, et al., Synthesis and characterization of a novel mPEG-chitosan diblock copolymer and self-assembly of nanoparticles, Carbohydr. Polym. 79 (2010) 170-175.
-
[12]
[12] A. Miwa, A. Ishibe, M. Nakano, et al., Development of novel chitosan derivatives as micellar carriers of taxol, Pharm. Res. 15 (1998) 1844-1850.
-
[13]
[13] C. Zhang, P. Qineng, H.J. Zhang, Self-assembly and characterization of paclitaxelloaded N-octyl-O-sulfate chitosan micellar system, Colloids Surf. B: Biointerfaces 39 (2004) 69-75.
-
[14]
[14] D.W. Zhu, J.G. Bo, K.D. Yao, et al., Synthesis of N-methylene phosphonic chitosan (NMPCS) and its potential as gene carrier, Chin. Chem. Lett. 18 (2007) 1407-1410.
-
[15]
[15] P. Chan, M. Kurisawa, J.E. Chung, et al., Synthesis and characterization of chitosang- poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery, Biomaterials 28 (2007) 540-549.
-
[16]
[16] A.J. Dong, M.H. Feng, H.Y. Qi, et al., Synthesis and properties of O-carboxymethyl chitosan/methoxy poly (ethylene glycol) graft copolymers, J. Mater. Sci. Mater. Med. 19 (2008) 869-876.
-
[17]
[17] S.Y. Zhu, F. Qian, Y. Zhang, et al., Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticle, Eur. Polym. J. 43 (2007) 2244-2253.
-
[18]
[18] A.R. Kulkarni, Y.H. Lin, H.F. Liang, et al., A novel method for the preparation of nanoaggregates of methoxy polyethyleneglycol linked chitosan, J. Nanosci. Nanotechnol. 6 (2006) 2867-2873.
-
[19]
[19] T. Peng, Y. Li, D. Ahn, et al., Synthesis and characterization of pH-responsive poly (2-hydroxyethyl aspartamide)-g-poly (b-amino ester) graft copolymer micelles as potential drug carriers, Macromol. Res. 21 (2013) 400-405.
-
[1]
-
-
-
[1]
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
-
[2]
Haoyu Luo , Jinsong Chen , Mengfei Luo , Hui Ma , Shengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367
-
[3]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[4]
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
-
[5]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[6]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[7]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[8]
Weiwei Liu , Yu Liu , Zhaoyan Tian , Zhaohan Wang , Hui Liu , Songqin Liu , Yafeng Wu . Online detecting living cells released TNF-α and studying intercellular communication using SuperDNA self-assembled conical nanochannel. Chinese Chemical Letters, 2025, 36(5): 110561-. doi: 10.1016/j.cclet.2024.110561
-
[9]
Yayun Shi , Congcong Liu , Zhijun Zuo , Xiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772
-
[10]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[11]
Rui TIAN , Jiamin CHAI , Junyu CHEN , Yuan REN , Xuehua SUN , Haoyu LI , Yuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026
-
[12]
Lian Jin , Juan Zhang , Libo Nie , Yan Deng , Ghulam Jilany Khana , Nongyue He . Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases. Chinese Chemical Letters, 2025, 36(10): 110774-. doi: 10.1016/j.cclet.2024.110774
-
[13]
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468
-
[14]
Baoqi Wu , Rongzhi Tang , Zhi-Wei Li , Feng Lin , Zongyu Sun , Huanyu Xia , Lin Jiang , Yu Tan . Selective encapsulation of azo compounds by tetracationic cyclophane in water and photo-controlled reversible release. Chinese Chemical Letters, 2025, 36(9): 110896-. doi: 10.1016/j.cclet.2025.110896
-
[15]
Chenkai Yang , Xiaoling Pan , Weiguang Zhao , Zhiwen Qiu , Lei He , Cong Wu , Ang Li , Zhengnan Huang , Yilin Yan , Shengzhou Li , Zhuofan Nan , Xiangqian Cao , Bing Shen , Wei Li . Intratumoral photo-controlled antigens burst release for synergistic immunotherapy by bio-membrane and organic membrane coated dual-functional nanoparticles. Chinese Chemical Letters, 2025, 36(9): 110740-. doi: 10.1016/j.cclet.2024.110740
-
[16]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[17]
Rui Li , Ruijie Lu , Libin Yang , Jianwen Li , Zige Guo , Qiquan Yan , Mengjun Li , Yazhuo Ni , Keying Chen , Yaoyang Li , Bo Xu , Mengzhen Cui , Zhan Li , Zhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242
-
[18]
Qian Chen , Anyang Shen , Taotao Huang , Xinya Han , Jian Zhang , Hui Jiang , Renyong Liu , Yong Pan , Kui Zhang . Ultrasensitive and selective detection of chemical nerve agent simulants based on naphthalimide functionalized chitosan as fluorescent nanofibers. Chinese Chemical Letters, 2025, 36(7): 110331-. doi: 10.1016/j.cclet.2024.110331
-
[19]
Aijia Zhang , Guiyuan Zhao , Guangli Xiang , Rui Chen , Yu Dong , Qijie Diao , Jialin Wang , Xiaohui Lin , Wenxuan Zeng , Tianze Jiang , Jun Wu , Xia Zhao . Barnacle-inspired chitosan glycerin gel for skin protection and wound healing in harsh environments. Chinese Chemical Letters, 2025, 36(8): 110767-. doi: 10.1016/j.cclet.2024.110767
-
[20]
Xing Cao , Xinyu Tian , Yuanyuan Huang , Liping Zhang , Yanpeng Ni , Yu-Zhong Wang . H3PO3-protonated chitosan enabling flame-retardant and antibacterial PVA composite films with high strength and toughness through multiple H-bonds and interlocking interfaces. Chinese Chemical Letters, 2025, 36(11): 111382-. doi: 10.1016/j.cclet.2025.111382
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1307)
- HTML views(77)
Login In
DownLoad: