Citation: Qing-Han Li, Yong Ding, Neng-Wang Huang. Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group[J]. Chinese Chemical Letters, ;2014, 25(11): 1469-1472. doi: 10.1016/j.cclet.2014.05.022 shu

Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group

  • Corresponding author: Qing-Han Li, 
  • Received Date: 12 February 2014
    Available Online: 30 April 2014

    Fund Project: The authors are thankful to the National Centre for Drug Screening, Shanghai, China, for evaluating the inhibitory activity against CDC25B. We also thank the Fundamental Research Funds for the Central Universities, Southwest University for Nationalities (No. 12NZYTH03) (No. 12NZYTH03) the Natural Science Foundation of Southwest University for Nationalities (No. 381010) (No. 381010)

  • Twelve novel dithiocarbamates containing 1,2,3-trizaoles group were prepared via one step starting from organic halides, dithiocarbamic acid prop-2-ynyl ester, and sodium azide, using a very simple catalytic system composed of copper(Ⅰ) chloride and water at 70℃. The structures of the new compounds were characterized and screened for their in vitro anti-tumor. Four of the compounds displayed varying levels of anti-tumor activity against the CDC25B.
  • 加载中
    1. [1]

      [1] M. Dhooghe, N. de Kime, Synthetic approaches towards 2-iminothiazolidines: an overview, Tetrahedron 62 (2006) 513-535.

    2. [2]

      [2] E.D. Caldas, M.H. Conceicü a, M.C.C. Miranda, L. Souza, J.F. Lima, Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system, J. Agric. Food Chem. 49 (2001) 4521-4525.

    3. [3]

      [3] A. Goel, S.J. Mazur, R.J. Fattah, et al., Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors, Bioorg. Med. Chem. Lett. 12 (2002) 767-770.

    4. [4]

      [4] N. Azizi, F. Aryanasab, M.R. Saidi, Straightforward and highly efficient catalystfree one-pot synthesis of dithiocarbamates under solvent-free conditions, Org. Lett. 8 (2006) 5275-5277.

    5. [5]

      [5] C. Rafin, E. Veignie, M. Sancholle, et al., Synthesis and antifungal activity of novel bisdithiocarbamate derivatives of carbohydrates against Fusarium oxysporum f. sp. Lini, J. Agric. Food Chem. 48 (2000) 5283-5287.

    6. [6]

      [6] T. Mizuno, I. Nishiguchi, T. Okushi, T. Hirashima, Facile synthesis of S-alkyl thiocarbamates through reaction of carbamoyl lithium with elemental sulfur, Tetrahedron Lett. 32 (1991) 6867-6868.

    7. [7]

      [7] T.W. Greene, P.G.M. Wuts, Protecting Groups in Organic Synthesis, 3rd ed., Wiley Interscience, New York, 1999, pp. 484-485.

    8. [8]

      [8] S. Bhadra, A. Saha, B.C. Ranu, One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates, Green Chem. 10 (2008) 1224-1230.

    9. [9]

      [9] P. Morf, F. Raimondi, H.G. Nothofer, et al., Dithiocarbamates: functional and versatile linkers for the formation of self-assembled monolayers, Langmuir 22 (2006) 658-663.

    10. [10]

      [10] D. Zhang, J. Chen, Y. Liang, H. Zhou, Facile synthesis of novel ionic liquids containing dithiocarbamate, Synth. Commun. 35 (2005) 521-526.

    11. [11]

      [11] L. Ronconi, C. Marzano, P. Zanello, et al., Gold(Ⅲ) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties, J. Med. Chem. 49 (2006) 1648-1657.

    12. [12]

      [12] W. Walter, K.D. Bode, Syntheses of thiocarbamates, Angew. Chem. Int. Ed. Engl. 6 (1967) 281-293.

    13. [13]

      [13] G.H. Elgemeie, S.H. Sayed, Synthesis and chemistry of dithiols, Synthesis 12 (2001) 1747-1771.

    14. [14]

      [14] W.Q. Fan, A.R. Katritzky, in: A.R. Katritzky, C.W. Rees, E.F. Scriven (Eds.), Comprehensive Heterocyclic Chemistry Ⅱ, vol. 4, ElsevierScience, Oxford, 1996, pp. 1-2.

    15. [15]

      [15] S. Palhagen, R. Canger, O. Henriksen, et al., Rufinamide: a double-blind, placebocontrolled proof of principle trial in patients with epilepsy, Epilepsy Res. 43 (2001) 115-124.

    16. [16]

      [16] F. Pagliai, T. Pirali, E.D. Grosso, et al., Rapid synthesis of triazole-modified resveratrol analogues via click chemistry, J. Med. Chem. 49 (2006) 467-470.

    17. [17]

      [17] S.A. Bakunov, S.M. Bakunova, T. Wenzler, et al., Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles, J. Med. Chem. 53 (2010) 254-272.

    18. [18]

      [18] R. Alvarez, S. Velazquez, A. San-Felix, et al., 1,2,3-Triazole-[2,5-bis-O-(tert-butyldimethylsilyl)- beta-D-ribofuranosyl]-30-spiro-500-(400-amino-100,200-oxathiole 200,200-dioxide) (TSAO) analogs: synthesis and anti-HIV-1 activity, J. Med. Chem. 37 (1994) 4185-4194.

    19. [19]

      [19] M.J. Genin, D.A. Allwine, D.J. Anderson, et al., Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis, J. Med. Chem. 43 (2000) 953-970.

    20. [20]

      [20] G. L'abbe, Decomposition and addition reactions of organic azides, Chem. Rev. 69 (1969) 345-363.

    21. [21]

      [21] R. Huisgen, A. Padwa (Eds.), 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, pp. 1-176.

    22. [22]

      [22] K.V. Gothelf, K.A. Jgensen, Asymmetric 1,3-dipolar cycloaddition reactions, Chem. Rev. 98 (1998) 863-910.

    23. [23]

      [23] M.L. Kantam, V.S. Jaya, B. Sreedhar, M.M. Rao, B.M. Choudary, Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles, J. Mol. Catal. A: Chem. 256 (2006) 273-277.

    24. [24]

      [24] Y.L. Zhao, W.R. Dichtel, A. Trabolsi, et al., A redox-switchable a-cyclodextrinbased[ 2]rotaxane, J. Am. Chem. Soc. 130 (2008) 11294-11296.

    25. [25]

      [25] J.C. Chen, Y.P. Wang, H.D. Wang, et al., Preparation of polymer brushes on attapulgite surfaces via a combination of CROP and click reaction, Chin. Chem. Lett. 21 (2010) 496-500.

    26. [26]

      [26] W.W. Zhao, H. Li, J. Zhang, S. Chao, Synthesis of novel gem-difluoromethylenecontaining 1,2,3-triazoles via click reaction, Chin. J. Chem. 29 (2011) 2763-2768.

    27. [27]

      [27] H.B. Fang, L. Jin, N.Y. Huang, et al., Synthesis, structure and H+ /K+-ATPase inhibitory activity of novel triazolyl substituted tetrahydrobenzofuran derivatives via one-pot three-component click reaction, Chin. J. Chem. 6 (2013) 831-838.

    28. [28]

      [28] A. Coelho, P. Diz, O. Caamano, E. Sotelo, Polymer-supported 1,5,7-triazabicyclo[ 4.4.0]dec-5-ene as polyvalent ligands in the copper-catalyzed huisgen 1,3- dipolar cycloaddition, Adv. Synth. Catal. 352 (2010) 1179-1192.

    29. [29]

      [29] A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, et al., Synthesis and tunability of abnormal 1,2,3-triazolylidene palladium and rhodium complexes, Organometallics 30 (2011) 1021-1029.

    30. [30]

      [30] K. Wang, X.H. Bi, S.X. Xing, et al., Cu2O acting as a robust catalyst in CuAAC reactions: water is the required medium, Green Chem. 13 (2011) 562-565.

    31. [31]

      [31] R.B.N. Baig, R.S. Varma, A highly active magnetically recoverable nano ferriteglutathione- copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions, Green Chem. 14 (2012) 625-632.

    32. [32]

      [32] B.S.P.A. Kumar, K.H.V. Reddy, B. Madhav, K. Ramesh, Y.V.D. Nageswar, Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry', Tetrahedron Lett. 53 (2012) 4595-4599.

    33. [33]

      [33] Y.L. Angell, K. Burgess, Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions, Chem. Soc. Rev. 36 (2007) 1674-1689.

    34. [34]

      [34] D. Fournier, R. Hoogen-boom, U.S. Schubert, Clicking polymers: a straightforward approach to novel macromolecular architectures, Chem. Soc. Rev. 36 (2007) 1369-1380.

    35. [35]

      [35] J.E. Moses, A.D. Moorhouse, The growing applications of click chemistry, Chem. Soc. Rev. 36 (2007) 1249-1262.

    36. [36]

      [36] J.F. Lutz, 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science, Angew. Chem. Int. Ed. 46 (2007) 1018-1025.

    37. [37]

      [37] A. Dondoni, Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction, Chem. Asian J. 2 (2007) 700-708.

    38. [38]

      [38] S.R. Guo, Y.Q. Yuan, C.N. Zhang, Highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions, Chin. J. Org. Chem. 32 (2012) 907-914 (in Chinese).

  • 加载中
    1. [1]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    4. [4]

      Zhi-Lin WuRong-Nan YiChunlin Zhuang . Electrochemical synthesis strategy for the development of antitumor selenoheterocyclic compounds. Chinese Chemical Letters, 2025, 36(10): 111408-. doi: 10.1016/j.cclet.2025.111408

    5. [5]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    6. [6]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    11. [11]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    12. [12]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    13. [13]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Wen-Rui LiRu-Bing WangHuiqiang WangJin-Yao YongYu-Huan LiShi-Shan YuShuang-Gang Ma . Ring-reorganization strategy for asymmetric synthesis of sesquiterpenoid illihenin A and its antiviral activity evaluation. Chinese Chemical Letters, 2025, 36(11): 110945-. doi: 10.1016/j.cclet.2025.110945

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    19. [19]

      Qiong-Hui PengNing-Bo LiJia-Cheng HouCai-Jun HeYa-Xin YangChun-Lin ZhuangLi-Juan OuMei YuanWei-Min He . Nd@g-C3N4 dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2025, 36(12): 111402-. doi: 10.1016/j.cclet.2025.111402

    20. [20]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

Metrics
  • PDF Downloads(0)
  • Abstract views(1185)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return