Citation: Qing-Han Li, Yong Ding, Neng-Wang Huang. Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group[J]. Chinese Chemical Letters, ;2014, 25(11): 1469-1472. doi: 10.1016/j.cclet.2014.05.022
-
Twelve novel dithiocarbamates containing 1,2,3-trizaoles group were prepared via one step starting from organic halides, dithiocarbamic acid prop-2-ynyl ester, and sodium azide, using a very simple catalytic system composed of copper(Ⅰ) chloride and water at 70℃. The structures of the new compounds were characterized and screened for their in vitro anti-tumor. Four of the compounds displayed varying levels of anti-tumor activity against the CDC25B.
-
Keywords:
- Dithiocarbamates,
- 1,2,3-Trizaoles,
- Synthesis,
- Antitumor activity
-
-
[1]
[1] M. Dhooghe, N. de Kime, Synthetic approaches towards 2-iminothiazolidines: an overview, Tetrahedron 62 (2006) 513-535.
-
[2]
[2] E.D. Caldas, M.H. Conceicü a, M.C.C. Miranda, L. Souza, J.F. Lima, Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system, J. Agric. Food Chem. 49 (2001) 4521-4525.
-
[3]
[3] A. Goel, S.J. Mazur, R.J. Fattah, et al., Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors, Bioorg. Med. Chem. Lett. 12 (2002) 767-770.
-
[4]
[4] N. Azizi, F. Aryanasab, M.R. Saidi, Straightforward and highly efficient catalystfree one-pot synthesis of dithiocarbamates under solvent-free conditions, Org. Lett. 8 (2006) 5275-5277.
-
[5]
[5] C. Rafin, E. Veignie, M. Sancholle, et al., Synthesis and antifungal activity of novel bisdithiocarbamate derivatives of carbohydrates against Fusarium oxysporum f. sp. Lini, J. Agric. Food Chem. 48 (2000) 5283-5287.
-
[6]
[6] T. Mizuno, I. Nishiguchi, T. Okushi, T. Hirashima, Facile synthesis of S-alkyl thiocarbamates through reaction of carbamoyl lithium with elemental sulfur, Tetrahedron Lett. 32 (1991) 6867-6868.
-
[7]
[7] T.W. Greene, P.G.M. Wuts, Protecting Groups in Organic Synthesis, 3rd ed., Wiley Interscience, New York, 1999, pp. 484-485.
-
[8]
[8] S. Bhadra, A. Saha, B.C. Ranu, One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates, Green Chem. 10 (2008) 1224-1230.
-
[9]
[9] P. Morf, F. Raimondi, H.G. Nothofer, et al., Dithiocarbamates: functional and versatile linkers for the formation of self-assembled monolayers, Langmuir 22 (2006) 658-663.
-
[10]
[10] D. Zhang, J. Chen, Y. Liang, H. Zhou, Facile synthesis of novel ionic liquids containing dithiocarbamate, Synth. Commun. 35 (2005) 521-526.
-
[11]
[11] L. Ronconi, C. Marzano, P. Zanello, et al., Gold(Ⅲ) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties, J. Med. Chem. 49 (2006) 1648-1657.
-
[12]
[12] W. Walter, K.D. Bode, Syntheses of thiocarbamates, Angew. Chem. Int. Ed. Engl. 6 (1967) 281-293.
-
[13]
[13] G.H. Elgemeie, S.H. Sayed, Synthesis and chemistry of dithiols, Synthesis 12 (2001) 1747-1771.
-
[14]
[14] W.Q. Fan, A.R. Katritzky, in: A.R. Katritzky, C.W. Rees, E.F. Scriven (Eds.), Comprehensive Heterocyclic Chemistry Ⅱ, vol. 4, ElsevierScience, Oxford, 1996, pp. 1-2.
-
[15]
[15] S. Palhagen, R. Canger, O. Henriksen, et al., Rufinamide: a double-blind, placebocontrolled proof of principle trial in patients with epilepsy, Epilepsy Res. 43 (2001) 115-124.
-
[16]
[16] F. Pagliai, T. Pirali, E.D. Grosso, et al., Rapid synthesis of triazole-modified resveratrol analogues via click chemistry, J. Med. Chem. 49 (2006) 467-470.
-
[17]
[17] S.A. Bakunov, S.M. Bakunova, T. Wenzler, et al., Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles, J. Med. Chem. 53 (2010) 254-272.
-
[18]
[18] R. Alvarez, S. Velazquez, A. San-Felix, et al., 1,2,3-Triazole-[2,5-bis-O-(tert-butyldimethylsilyl)- beta-D-ribofuranosyl]-30-spiro-500-(400-amino-100,200-oxathiole 200,200-dioxide) (TSAO) analogs: synthesis and anti-HIV-1 activity, J. Med. Chem. 37 (1994) 4185-4194.
-
[19]
[19] M.J. Genin, D.A. Allwine, D.J. Anderson, et al., Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis, J. Med. Chem. 43 (2000) 953-970.
-
[20]
[20] G. L'abbe, Decomposition and addition reactions of organic azides, Chem. Rev. 69 (1969) 345-363.
-
[21]
[21] R. Huisgen, A. Padwa (Eds.), 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, pp. 1-176.
-
[22]
[22] K.V. Gothelf, K.A. Jgensen, Asymmetric 1,3-dipolar cycloaddition reactions, Chem. Rev. 98 (1998) 863-910.
-
[23]
[23] M.L. Kantam, V.S. Jaya, B. Sreedhar, M.M. Rao, B.M. Choudary, Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles, J. Mol. Catal. A: Chem. 256 (2006) 273-277.
-
[24]
[24] Y.L. Zhao, W.R. Dichtel, A. Trabolsi, et al., A redox-switchable a-cyclodextrinbased[ 2]rotaxane, J. Am. Chem. Soc. 130 (2008) 11294-11296.
-
[25]
[25] J.C. Chen, Y.P. Wang, H.D. Wang, et al., Preparation of polymer brushes on attapulgite surfaces via a combination of CROP and click reaction, Chin. Chem. Lett. 21 (2010) 496-500.
-
[26]
[26] W.W. Zhao, H. Li, J. Zhang, S. Chao, Synthesis of novel gem-difluoromethylenecontaining 1,2,3-triazoles via click reaction, Chin. J. Chem. 29 (2011) 2763-2768.
-
[27]
[27] H.B. Fang, L. Jin, N.Y. Huang, et al., Synthesis, structure and H+ /K+-ATPase inhibitory activity of novel triazolyl substituted tetrahydrobenzofuran derivatives via one-pot three-component click reaction, Chin. J. Chem. 6 (2013) 831-838.
-
[28]
[28] A. Coelho, P. Diz, O. Caamano, E. Sotelo, Polymer-supported 1,5,7-triazabicyclo[ 4.4.0]dec-5-ene as polyvalent ligands in the copper-catalyzed huisgen 1,3- dipolar cycloaddition, Adv. Synth. Catal. 352 (2010) 1179-1192.
-
[29]
[29] A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, et al., Synthesis and tunability of abnormal 1,2,3-triazolylidene palladium and rhodium complexes, Organometallics 30 (2011) 1021-1029.
-
[30]
[30] K. Wang, X.H. Bi, S.X. Xing, et al., Cu2O acting as a robust catalyst in CuAAC reactions: water is the required medium, Green Chem. 13 (2011) 562-565.
-
[31]
[31] R.B.N. Baig, R.S. Varma, A highly active magnetically recoverable nano ferriteglutathione- copper (nano-FGT-Cu) catalyst for Huisgen 1,3-dipolar cycloadditions, Green Chem. 14 (2012) 625-632.
-
[32]
[32] B.S.P.A. Kumar, K.H.V. Reddy, B. Madhav, K. Ramesh, Y.V.D. Nageswar, Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry', Tetrahedron Lett. 53 (2012) 4595-4599.
-
[33]
[33] Y.L. Angell, K. Burgess, Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions, Chem. Soc. Rev. 36 (2007) 1674-1689.
-
[34]
[34] D. Fournier, R. Hoogen-boom, U.S. Schubert, Clicking polymers: a straightforward approach to novel macromolecular architectures, Chem. Soc. Rev. 36 (2007) 1369-1380.
-
[35]
[35] J.E. Moses, A.D. Moorhouse, The growing applications of click chemistry, Chem. Soc. Rev. 36 (2007) 1249-1262.
-
[36]
[36] J.F. Lutz, 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science, Angew. Chem. Int. Ed. 46 (2007) 1018-1025.
-
[37]
[37] A. Dondoni, Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction, Chem. Asian J. 2 (2007) 700-708.
-
[38]
[38] S.R. Guo, Y.Q. Yuan, C.N. Zhang, Highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions, Chin. J. Org. Chem. 32 (2012) 907-914 (in Chinese).
-
[1]
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[3]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[4]
Hong-Tao Ji , Yu-Han Lu , Yan-Ting Liu , Yu-Lin Huang , Jiang-Feng Tian , Feng Liu , Yan-Yan Zeng , Hai-Yan Yang , Yong-Hong Zhang , Wei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568
-
[5]
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
-
[6]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[7]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[8]
Xiaomeng Hu , Jie Yu , Lijie Sun , Linfeng Zhang , Wei Zhou , Dongpeng Yan , Xinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466
-
[9]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[10]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[11]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[12]
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
-
[13]
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
-
[14]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[15]
Yueying Yang , Huiru Xie , Xinbo Yu , Yang Liu , Hui Wang , Hua Li , Lixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570
-
[16]
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
-
[17]
Kangmin Wang , Liqiu Wan , Jingyu Wang , Chunlin Zhou , Ke Yang , Liang Zhou , Bijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554
-
[18]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[19]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[20]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(616)
- HTML views(25)