Citation: Yao Liu, Er-Bing Yang, Rui Han, Di Zhang, Yong Ye, Yu-Fen Zhao. A new rhodamine-based fl uorescent chemosensor for mercury in aqueous media[J]. Chinese Chemical Letters, ;2014, 25(7): 1065-1068. doi: 10.1016/j.cclet.2014.04.033 shu

A new rhodamine-based fl uorescent chemosensor for mercury in aqueous media

  • Corresponding author: Yong Ye, 
  • Received Date: 11 November 2013
    Available Online: 22 April 2014

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos. 20972143, 21375113) (Nos. 20972143, 21375113)Program for New Century Excellent Talents in University (No. NCET-11-0950). (No. NCET-11-0950)

  • A new fluorescent "on-off" chemosensor for Hg2+ initiated by a derivative of rhodamine B was designed and synthesized. Compound 1 exhibited high sensitivity and selectivity for Hg2+ over other commonly coexistent metal ions in aqueous media. Upon the addition of Hg2+, the spirocyclic ring of probe is opened and a significant enhancement of visible color and fluorescence in the range of 500-600 nm is observed. The colorimetric and fluorescent response to Hg2+ can be conveniently detected by the naked eye, which provides a facile method for visual detection of Hg2+. From the molecular structure and spectral results of 1, an irreversible, hydrolysis, desulfurization reaction mechanism is proposed.
  • 加载中
    1. [1]

      [1] (a) J.F. Callan, A.P. de Silva, D.C. Magri, Luminescent sensors and switches in the early 21st century, Tetrahedron 61 (2005) 8551-8588; (b) A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, P.L.M. Lynch, Molecular photoionic switches with an internal reference channel for fluorescent pH sensing applications, New J. Chem. 20 (1996) 871-880; (c) F. Pina, M.A. Bernardo, E. Garcia-Espana, Fluorescent chemosensors containing polyamine receptors, Eur. J. Inorg. Chem. 2000 (2000) 2143-2157; (d) K. Rurack, U. Resch-Genger, Rigidization, preorientation and electronic decoupling-the ‘magic triangle' for the design of highly efficient fluorescent sensors and switches, Chem. Soc. Rev. 31 (2002) 116-127; (e) B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev. 205 (2000) 3-40.

    2. [2]

      [2] (a) R.Q. Zhou, B.J. Li, N.J. Wu, et al., Cyclen-functionalized perylenebisimides as sensitive and selective fluorescent sensors for Pb2+ in aqueous solution, Chem. Commun. 47 (2011) 6668-6670; (b) Q. Liu, G.P. Li, D.J. Zhu, L. Xue, H. Jiang, Design of quinoline-based fluorescent probe for the ratiometric detection of cadmium in aqueous media, Chin. Chem. Lett. 24 (2013) 479-482; (c) J. Liu, Q. Lin, H. Yao, et al., Turn-on fluorescence sensing of cyanide ions in aqueous solution, Chin. Chem. Lett. 25 (2014) 35-38.

    3. [3]

      [3] (a) J.J. Du, J.L. Fan, X.J. Peng, et al., A new fluorescent chemodosimeter for Hg2+: selectivity, sensitivity, and resistance to Cys and GSH, Org. Lett. 12 (2010) 476-479; (b) S. Voutsadaki, G.K. Tsikalas, E. Klontzas, G.E. Froudakis, H.E. Katerinopoulos, A "turn-on" coumarin-based fluorescent sensor with high selectivity for mercury ions in aqueous media, Chem. Commun. 46 (2010) 3292-3294; (c) V. Bhalla, R. Tejpal, M. Kumar, Rhodamine appended terphenyl: a reversible "off-on" fluorescent chemosensor for mercury ions, Sens. Actuators B 151 (2010) 180-185.

    4. [4]

      [4] (a) Y.K. Yang, K.J. Yook, J. Tae, A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media, J. Am. Chem. Soc. 127 (2005) 16760-16761; (b) J.Y. Kwon, Y.J. Jang, Y.J. Lee, et al., A highly selective fluorescent chemosensor for Pb2+, J. Am. Chem. Soc. 127 (2005) 10107-10111; (c) L. Tang, Y. Li, R. Nandhakumar, J. Qian, An unprecedented rhodamine-based fluorescent and colorimetric chemosensor for Fe3+ in aqueous media, Monatsh. Chem. 141 (2010) 615-620.

    5. [5]

      [5] (a) R. Han, X. Yang, D. Zhang, et al., A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(II) in aqueous, media, New J. Chem. 36 (2012) 1961-1965; (b) W.Y. Lin, X.W. Cao, Y.D. Ding, L. Yuan, L.L. Long, A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamidealkyne scaffold, Chem. Commun. 46 (2010) 3529-3531; (c) Z.X. Han, B.S. Zhu, T.L. Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25 (2014) 73-76.

    6. [6]

      [6] (a) D. Zhang, M. Wang, M. Chai, et al., Three highly sensitive and selective colorimetric and off-on fluorescent chemosensors for Cu2+ in aqueous solution, Sens. Actuators B 168 (2012) 200-206; (b) X. Chen, H. Hong, R. Han, et al., A new bis(rhodamine)-based fluorescent chemosensor for Fe3+, J. Fluoresc. 22 (2012) 789-794.

  • 加载中
    1. [1]

      Xuelian ZhouLu MiaoWei ZhouQinglong QiaoZhaochao Xu . Dye-mediated FRET strategy for constructing semi-synthetic large Stokes shift far-red fluorescent protein. Chinese Chemical Letters, 2025, 36(10): 110984-. doi: 10.1016/j.cclet.2025.110984

    2. [2]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    3. [3]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    4. [4]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    5. [5]

      Qian PangFangjun HuoYongkang YueCaixia Yin . ONOO and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713

    6. [6]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    7. [7]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    8. [8]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    9. [9]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    10. [10]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    11. [11]

      Xinyi ZhaoYuai DuanZihan LiuHua GengYaping LiZhongfeng LiTianyu Han . Mapping sweat pores for biometric identification based on a donor-acceptor hydrophilic fluorescent probe. Chinese Chemical Letters, 2025, 36(8): 110617-. doi: 10.1016/j.cclet.2024.110617

    12. [12]

      Mengyu CaoYiyan YinJingyi QinJin OuyangNa Na . Unconventional application of a fluorescent probe for MS-based detection of multiple sulfur species in ferroptosis. Chinese Chemical Letters, 2026, 37(1): 111260-. doi: 10.1016/j.cclet.2025.111260

    13. [13]

      Chengcheng ZhangZhe WuNingning JiangYi SongWeina GengHongmei LiuMing JinShuxiang WangJinchao ZhangYutao Yang . A fluorescent probe regulated by trifluoromethyl and nitrogen-containing heterocycles for monitoring biothiol fluctuations in the brains of mice with schizophrenia. Chinese Chemical Letters, 2026, 37(1): 111476-. doi: 10.1016/j.cclet.2025.111476

    14. [14]

      Meitong WuKe WuShumin FengLi XuMi LeiJianmei ChenShuang LiMian QinDahui LiuGuoqiang Feng . A NIR and ratiometric fluorescent probe for quantitative detection of SO2 derivatives in Chinese medicinal materials and bioimaging in vivo. Chinese Chemical Letters, 2026, 37(1): 110979-. doi: 10.1016/j.cclet.2025.110979

    15. [15]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    16. [16]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    17. [17]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    18. [18]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    19. [19]

      Lei LiGuang YangTianbai XiongTingzhu DuanJia WangXin Wang . Metal-free click polymerization of thiols and chalcone-derived internal olefins in air to prepare functional clusteroluminescent polythioethers for dual-response fluorescent probe. Chinese Chemical Letters, 2025, 36(11): 111374-. doi: 10.1016/j.cclet.2025.111374

    20. [20]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

Metrics
  • PDF Downloads(0)
  • Abstract views(1161)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return