Citation: Ying-Xia Wang, Tie-Hong Chen. A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation[J]. Chinese Chemical Letters, ;2014, 25(6): 907-911. doi: 10.1016/j.cclet.2014.04.031 shu

A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation

  • Corresponding author: Tie-Hong Chen, 
  • Received Date: 4 March 2014
    Available Online: 8 April 2014

    Fund Project: This work was supported by NSFC (No. 21373116) (No. 21373116) Tianjin Natural Science Research Fund (No. 13JCYBJC18300) (No. 13JCYBJC18300) RFDP (No. 20120031110005) (No. 20120031110005)MOE Innovation Team of China (No. IRT13022). (No. IRT13022)

  • Pt:Pd:Co ternary alloy nanoparticles were synthesized by sodium borohydride reduction under nitrogen, and were supported on carbon black as catalysts for methanol and formic acid electro-oxidation. Compared with Pt0.65Co0.30/C, Pt/C, Pd0.65Co0.30/C, and Pd/C catalyst, Pt0.35Pd0.35Co0.30/C exhibited relatively high durability and strong poisoning resistance, and the Pt-mass activity was 3.6 times higher than that of Pt/C in methanol oxidation reaction. Meanwhile, the Pt0.35Pd0.35Co0.30/C exhibited excellent activity with higher current density and higher CO tolerance than that of Pt0.65Co0.30/C, Pt/C, Pd0.65Co0.30/C, and Pd/C in formic acid electro-oxidation.
  • 加载中
    1. [1]

      [1] S. Strnivasan, R. Mosdale, P. Stevens, C. Yang, Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century, Ann. Rev. Energy Environ. 24 (1999) 281-328.

    2. [2]

      [2] S.J. Guo, S. Zhang, S.H. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction, Angew. Chem. Int. Ed. 52 (2013) 8526-8544.

    3. [3]

      [3] S. Strnivasan, Fuel Cells: From Fundamentals to Applications, Springer, New York, 2006.

    4. [4]

      [4] Y.H. Bing, H.S. Liu, L. Zhang, D. Ghosh, J.J. Zhang, Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction, Chem. Soc. Rev. 39 (2010) 2184-2201.

    5. [5]

      [5] S.J. Yoo, T.Y. Jeon, K.S. Kim, T.H. Lim, Y.E. Sung, Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts, Phys. Chem. Chem. Phys. 12 (2010) 15240-15246.

    6. [6]

      [6] S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells, J. Power Sources 195 (2010) 1001-1006.

    7. [7]

      [7] J. Kugai, T. Moriya, S. Seino, et al., CeO2-supported Pt-Cu alloy nanoparticles synthesized by radiolytic process for highly selective CO oxidation, Int. J. Hydrogen Energy 37 (2012) 4787-4797.

    8. [8]

      [8] G.A. Camara, R.B. De Lima, T. lwasita, The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy, J. Electroanal. Chem. 585 (2005) 128-131.

    9. [9]

      [9] M. Nie, H.L. Tang, Z. Wei, S.P. Jiang, P.K. Shen, Highly efficient AuPd-WC/C electrocatalyst for ethanol oxidation, Electrochem. Commun. 9 (2007) 2375-2379.

    10. [10]

      [10] E. Antolini, F. Colmati, E.R. Gonzalez, Ethanol oxidation on carbon supported (PtSn)alloy/SnO2 and (PtSnPd)alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: effect of the alloy phase characteristics, J. Power Sources 193 (2009) 555-561.

    11. [11]

      [11] E. Lee, I.S. Park, A. Manthiram, Synthesis and characterization of Pt-Sn-Pd/C catalysts for ethanol electro-oxidation reaction, J. Phys. Chem. C 114 (2010) 10634-10640.

    12. [12]

      [12] J. Datta, A. Dutta, S. Mukherjee, The beneficial role of the cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: temperature effect and reaction mechanism, J. Phys. Chem. C 115 (2011) 15324-15334.

    13. [13]

      [13] M. Watanabe, K. Tsurumi, T. Nakamura, T. Nakamura, P. Stonehart, Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells, J. Electrochem. Soc. 141 (1994) 2659-2668.

    14. [14]

      [14] E. Antolini, J.R.C. Salaado, E.R. Gonzalez, The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt-Co catalyst, J. Power Sources 160 (2006) 957-968.

    15. [15]

      [15] V. Mazumder, M. Chi, M.N. Mankin, et al., A facile synthesis of MPd (M=Co, Cu) nanoparticles and their catalysis for formic acid oxidation, Nano Lett. 12 (2012) 1102-1106.

    16. [16]

      [16] S.K. Singh, Q. Xu, Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage, J. Am. Chem. Soc. 131 (2009) 18032-18033.

    17. [17]

      [17] D. Sun, V. Mazumder, O. Metin, S.H. Sun, Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles, ACS Nano 5 (2011) 6458-6464.

    18. [18]

      [18] C. Wang, M. Chi, D. Li, et al., Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts, ACS Catal. 1 (2011) 1355-1359.

    19. [19]

      [19] E. Bertin, S. Garbarino, A. Ponrouch, D. Guay, Synthesis and characterization of PtCo nanowires for the electro-oxidation of methanol, J. Power Sources 206 (2012) 20-28.

    20. [20]

      [20] B.M. Luo, X.B. Yan, S. Xu, Q.J. Xue, synthesis of worμ-like PtCo nanotubes for methanol oxidation, Electrochem. Commun. 30 (2013) 71-74.

    21. [21]

      [21] H. Zhao, L. Pan, J. Jin, L. Li, J. Xu, PtCo/polypyrrole-multiwalled carbon nanotube complex cathode catalyst containing two types of oxygen reduction active sites used in direct methanol fuel cells, Fuel Cell 12 (2012) 876-882.

    22. [22]

      [22] H.J. Huang, Y. Fan, X. Wang, Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol, Electrochim. Acta 80 (2012) 118-125.

    23. [23]

      [23] O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Mater. Res. Bull. 36 (2001) 2183-2198.

    24. [24]

      [24] A.P. Tsai, A test of Hume-Rothery rules for stable quasicrystals, J. Non-Cryst. Solids 334 (2004) 317-322.

    25. [25]

      [25] J.W. Hong, D. Kim, Y.W. Lee, et al., Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals, Angew. Chem. Int. Ed. 50 (2011) 8876-8880.

    26. [26]

      [26] G. Giovannetti, P.A. Khomyakov, G. Brocks, et al., Doping graphene with metal contacts, Phys. Rev. Lett. 101 (2008) 026803(1)-026803(4).

    27. [27]

      [27] R. Larsen, S. Ha, J. Zakzeski, R.I. Masel, Unusually active palladiuμ-based catalysts for the electrooxidation of formic acid, J. Power Sources 157 (2006) 78-84.

    28. [28]

      [28] Y. Lu, W. Chen, Nanoneedle-covered Pd-Ag nanotubes: high electrocatalytic activity for formic acid oxidation, J. Phys. Chem. C 114 (2010) 21190-21200.

  • 加载中
    1. [1]

      Yufeng ZHANGHaotian QIJingya ZHONGLeiming LANGGuojun YUANSiqi LUHaiying WANGGuangxiang LIU . S-anion effects on the improvement of adsorption capacity and performance for benzyl alcohol electro-oxidation catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2591-2600. doi: 10.11862/CJIC.20250282

    2. [2]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    3. [3]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    4. [4]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    5. [5]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    6. [6]

      Miaosen YangJunyang DingZhiwei WangJingwen ZhangZimo PengXijun Liu . NiMo-based alloy and its sulfides for energy-saving hydrogen production via sulfion oxidation assisted alkaline seawater splitting. Chinese Chemical Letters, 2025, 36(9): 110861-. doi: 10.1016/j.cclet.2025.110861

    7. [7]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    8. [8]

      Jun LuoYanya LiuJianghuaxiong ZhuChengxiong WangYunkun ZhaoDong YanJian LiLichao Jia . A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion. Chinese Chemical Letters, 2025, 36(7): 110171-. doi: 10.1016/j.cclet.2024.110171

    9. [9]

      Qing LiYumei FengYuhua XieQi XuYifei LiYingjie YuFang LuoZehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074

    10. [10]

      Nana YangRui YuanXinyue FuXiao TianJin YuShengzhou MaLiuqing WenJiabin Zhang . Concise synthesis of NDP-activated uronic acid by an oxidation reaction insertion strategy. Chinese Chemical Letters, 2025, 36(8): 110757-. doi: 10.1016/j.cclet.2024.110757

    11. [11]

      Xin ZhouXuejia LiYujia XiangHeng ZhangChuanshu HeZhaokun XiongWei LiPeng ZhouHongyu ZhouYang LiuBo Lai . The application of low-valent sulfur oxy-acid salts in advanced oxidation and reduction processes: A review. Chinese Chemical Letters, 2025, 36(9): 110664-. doi: 10.1016/j.cclet.2024.110664

    12. [12]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    13. [13]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    16. [16]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    17. [17]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    18. [18]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(0)
  • Abstract views(1107)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return