Citation: Rui Chen, Tie-Hong Chen. Facile synthesis of coordination polymer nanocubes and their conversion into mesoporous single crystal-like Y2O3 nanocubes[J]. Chinese Chemical Letters, ;2014, 25(6): 869-873. doi: 10.1016/j.cclet.2014.04.030 shu

Facile synthesis of coordination polymer nanocubes and their conversion into mesoporous single crystal-like Y2O3 nanocubes

  • Corresponding author: Tie-Hong Chen, 
  • Received Date: 4 March 2014
    Available Online: 14 April 2014

    Fund Project: This work was supported by NSFC (No. 21373116) (No. 21373116) Tianjin Natural Science Research Fund (No. 13JCYBJC18300) (No. 13JCYBJC18300) RFDP (No. 20120031110005) (No. 20120031110005)MOE Innovation Team (No. IRT13022) of China. (No. IRT13022)

  • Mesoporous single crystal-like Y2O3 nanocubes have been prepared through a coordination-based selfassembly process. Firstly, a uniform nanocube-like Y-lysine precursor was simply prepared with hydrothermal treatment. After the simple thermal treatment process, nanocube-shaped yttrium oxides with the morphology inherited from the Y-lysine precursor were successfully prepared. The phase, morphology, size and crystalline structure were well characterized by XRD, SEM and TEM. N2 adsorption-desorption demonstrates the mesoporous characteristics of the Y2O3 nanocubes, showing a relatively high surface area of 60 m2/g.
  • 加载中
    1. [1]

      [1] L.H. Chen, X.Y. Li, J.C. Rooke, et al., Hierarchically structured zeolites: synthesis, mass transport properties and applications, J. Mater. Chem. 22 (2012) 17381-17403.

    2. [2]

      [2] L.N. Jin, Q. Liu, W.Y. Sun, Room temperature solution-phase synthesis of flowerlike nanostructures of [Ni3(BTC)2•12H2O] and their conversion to porous NiO, Chin. Chem. Lett. 24 (2013) 663-667.

    3. [3]

      [3] Y.F. Shi, Y. Wan, D.Y. Zhao, Ordered mesoporous non-oxide materials, Chem. Soc. Rev. 40 (2011) 3854-3878.

    4. [4]

      [4] P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater. 11 (1999) 2813-2826.

    5. [5]

      [5] A.M. Spokoyny, D. Kim, A. Sumrein, C.A. Mirkin, Infinite coordination polymer nano-and microparticle structures, Chem. Soc. Rev. 38 (2009) 1218-1227.

    6. [6]

      [6] M.Y. Masoomi, A. Morsali, Applications of metal-organic coordination polymers as precursors for preparation of nano-materials, Coord. Chem. Rev. 256 (2012) 2921-2943.

    7. [7]

      [7] J. Wang, J. Wu, J. Lin, et al., Application of Y2O3:Er3+ nanorods in dye-sensitized solar cells, ChemSusChem 5 (2012) 1307-1312.

    8. [8]

      [8] J.B. Ma, Z.C. Wang, M. Schlangen, S.G. He, H. Schwarz, Thermal reactions of YAlO3 with methane: increasing the reactivity of Y2O3 and the selectivity of Al2O3, Angew. Chem. Int. Ed. 51 (2012) 5991-5994.

    9. [9]

      [9] Q. Dai, M.E. Foley, C.J. Breshike, A. Lita, G.F. Strouse, Ligand-passivated Eu:Y2O3 nanocrystals as a phosphor for white light emitting diodes, J. Am. Chem. Soc. 133 (2011) 15475-15486.

    10. [10]

      [10] Y.J.O. Asencios, C.B. Rodella, E.M. Assaf, Oxidative reforming of model biogas over NiO-Y2O3-ZrO2 catalysts, Appl. Catal. B 132-133 (2013) 1-12.

    11. [11]

      [11] M.H. Abadi, M.N. Hamidon, A.H. Shaari, et al., Characterization of mixed xWO3(1-x)Y2O3 nanoparticle thick film for gas sensing application, Sensors (Basel) 10 (2010) 5074-5089.

    12. [12]

      [12] Y. Zhang, S. Pan, X. Teng, Y. Luo, G. Li, Bifunctional magnetic-luminescent nanocompositesY2O3/Tb nanorods on the surface of iron oxidesilica core-shell nanostructures, J. Phys. Chem. C 112 (2008) 9623-9626.

    13. [13]

      [13] Y.B. Mao, J.Y. Huang, R. Ostroumov, K.L. Wang, J.P. Chang, Synthesis and luminescence properties of erbiuμ-doped Y2O3 nanotubes, J. Phys. Chem. C 112 (2008) 2278-2285.

    14. [14]

      [14] G. Jia, M. Yang, Y.H. Song, H.P. You, H.J. Zhang, General and facile method to prepare uniform Y2O3-Eu hollow spheres, Cryst. Growth. Des. 9 (2009) 301-307.

    15. [15]

      [15] R. Si, Y.W. Zhang, L.P. You, C.H. Yan, Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks, Angew. Chem. Int. Ed. Engl. 117 (2005) 3320-3324.

    16. [16]

      [16] S. Huang, J. Xu, Z. Zhang, et al., Rapid, morphologically controllable, large-scale synthesis of uniform Y(OH)3 and tunable luminescent properties of Y2O3:Yb3+/3+(Ln=Er, Tm and Ho), J. Mater. Chem. 22 (2012) 16136-16144.

    17. [17]

      [17] R.V. Mangalaraja, J. Mouzon, P. Hedström, et al., Combustion synthesis of Y2O3 and Yb-Y2O3, J. Mater. Proc. Technol. 208 (2008) 415-422.

    18. [18]

      [18] V.V. Rajasekharan, D.A. Buttry, Electrochemical synthesis of yttrium oxide nanotubes, Chem. Mater. 18 (2006) 4541-4543.

    19. [19]

      [19] G. Mialon, M. Gohin, T. Gacoin, J.P. Boilot, High temperature strategy for oxide nanoparticle synthesis, ACS Nano 2 (2008) 2505-2512.

    20. [20]

      [20] X. Qin, T. Yokomori, Y. Ju, Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors, Appl. Phys. Lett. 90 (2007) 073104.

    21. [21]

      [21] D.H.M. Buchold, C. Feldmann, Microemulsion approach to non-agglomerated and crystalline nanomaterials, Adv. Funct. Mater. 18 (2008) 1002-1011.

    22. [22]

      [22] Z. Huo, C. Chen, Y. Li, Self-assembly of uniform hexagonal yttrium phosphate nanocrystals, Chem. Commun. (Camb.) (2006) 3522-3524.

    23. [23]

      [23] S. Yin, S. Akita, M. Shinozaki, R. Li, T. Sato, Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction, J. Mater. Sci. 43 (2007) 2234-2239.

    24. [24]

      [24] A.M. Petrosyan, V.V. Ghazaryan, Vibrational spectra of L-lysine monohydrochloride dihydrate and its two anhydrous forms, J. Mol. Struct. 917 (2009) 56-62.

    25. [25]

      [25] T. Gougousi, Z. Chen, Deposition of yttrium oxide thin films in supercritical carbon dioxide, Thin Solid Films 516 (2008) 6197-6204.

    26. [26]

      [26] Y.F. Lin, J.H. Chen, S.H. Hsu, T.W. Chung, Hydrothermal synthesis of Lewis acid Y2O3 cubes and flowers for the removal of phospholipids from soybean oil, CrystEngComm 15 (2013) 6506-6510.

    27. [27]

      [27] W.W. Cai, H. Huang, X.Z. Guo, A facile one-step route to synthesize titania hollow microspheres with incontinuous multicavities, Chin. Chem. Lett. 25 (2014) 441-446.

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    3. [3]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    4. [4]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    5. [5]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    6. [6]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    7. [7]

      Huige ZhangWei ChenYuyan HuangMingfang WuHongli ChenCuiling RenXiaoyan LiuHaixia Zhang . Construction of template-free amplification system coupled with capillary electrophoresis for the simultaneous detection of three tumor-associated DNA repair enzymes. Chinese Chemical Letters, 2025, 36(9): 110721-. doi: 10.1016/j.cclet.2024.110721

    8. [8]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    9. [9]

      Yuming ShuHanghang LeiJiangnan HuangQing PanBaichao ZhangYixin XuYe ZhouGuorong HuYanbing CaoGuoqiang ZouWentao DengZhongdong PengHongshuai HouDi ChenXiaobo Ji . Enabling superior performance in brick-like single-crystal LiMn2O4 via BaO flux. Chinese Chemical Letters, 2025, 36(9): 110345-. doi: 10.1016/j.cclet.2024.110345

    10. [10]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    11. [11]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    12. [12]

      Qiuting ZhangFan WuJin LiuHang SuYanhui ZhongZian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649

    13. [13]

      Yi ChenHua-Pan WuZheng-Wei GuoXin-Xiong LiPing-Wei CaiShou-Tian Zheng . Construction of a diverting polyoxotungstate based on 3d-5p heterometallic cluster for high-performance single-crystal proton conduction. Chinese Chemical Letters, 2025, 36(11): 110552-. doi: 10.1016/j.cclet.2024.110552

    14. [14]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    18. [18]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    19. [19]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    20. [20]

      Hongzhi Zhang Hong Li Asif Ali Haider Junpeng Li Zhi Xie Hongming Jiang Conglin Liu Rui Wang Jing Zhu . An unexpected role of lanthanide substitution in thermally responsive phosphors NaLnTe2O7: Eu3+ (Ln = Y and Gd). Chinese Journal of Structural Chemistry, 2025, 44(2): 100509-100509. doi: 10.1016/j.cjsc.2024.100509

Metrics
  • PDF Downloads(0)
  • Abstract views(1324)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return