Citation: Min-Jie Shi, Sheng-Zhong Kou, Bao-Shou Shen, Jun-Wei Lang, Zhi Yang, Xing-Bin Yan. Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge[J]. Chinese Chemical Letters, ;2014, 25(6): 859-864. doi: 10.1016/j.cclet.2014.04.010 shu

Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge

  • Corresponding author: Sheng-Zhong Kou,  Xing-Bin Yan, 
  • Received Date: 24 January 2014
    Available Online: 20 March 2014

    Fund Project:

  • Ionic liquid gel polymers have widely been used as the electrolytes in all-solid-state supercapacitors, but they suffer from low ionic conductivity and poor electrochemical performance. Arc discharge is a fast, low-cost and scalable method to prepare multi-layered graphene nanosheets, and as-made graphene nanosheets (denoted as ad-GNSs) with few defects, high electrical conductivity and high thermal stability should be favorable conductive additive materials. Here, a novel ionic liquid gel polymer electrolyte based on an ionic liquid (EMIMNTF2) and an copolymer (P(VDF-HFP)) was modified by the addition of ad-GNSs as an ionic conducting promoter. This modified gel electrolyte shows excellent thermal stability up to 400℃ and a wide electrochemical window of 3 V. An all-solid-state supercapacitor based on commercial activated carbon was fabricated using this modified ionic liquid gel polymer electrolyte, which shows obviously improved electrochemical behaviors compared with those of the corresponding all-solid-state supercapacitor using pure ionic liquid gel polymer electrolyte. Specially, smaller internal resistance, higher specific capacitance, better rate performance and cycling stability are achieved. These results indicate that the ionic liquid gel polymers modified by ad-GNSs would be promising and suitable gel electrolytes for high performance all-solid-state electrochemical devices.
  • 加载中
    1. [1]

      [1] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

    2. [2]

      [2] W. Zhang, Y.H. Qu, L.J. Guo, Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626.

    3. [3]

      [3] R.S. Borges, A.L.M. Reddy, M.F. Rodrigues, et al., Supercapacitor operating at 200℃, Sci. Rep. 3 (2013) 2572-2578.

    4. [4]

      [4] L.R. Wang, F. Ran, Y.T. Tan, et al., Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode, Chin. Chem. Lett. 22 (2011) 964-968.

    5. [5]

      [5] W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue, Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111-4122.

    6. [6]

      [6] M. Liu, L. Gan, C. Tian, et al., Dual template approach for the synthesis of hierarchically mesocellular carbon foams, Chin. Chem. Lett. 20 (2009) 123-126.

    7. [7]

      [7] S.A. Hashmi, A. Kumar, S.K. Tripathi, Experimental studies on polymethyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors, J. Phys. D: Appl. Phys. 40 (2007) 6527-6534.

    8. [8]

      [8] S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes, J. Chem. Soc. Faraday Trans. 93 (1997) 4177-4182.

    9. [9]

      [9] A. Lewandowski, A. Swiderska, Electrochemical capacitors with polymer electrolytes based on ionic liquids, Solid State Ion. 161 (2003) 243-249.

    10. [10]

      [10] A. Fernicola, F.C. Weise, S.G. Greenbaum, et al., Lithiuμ-ion-conducting electrolytes: from an ionic liquid to the polymer membrane, J. Electrochem. Soc. 156 (2009) A514-A520.

    11. [11]

      [11] H.Y. Sung, Y.Y. Wang, C.C. Wan, Preparation and characterization of poly (vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-Ion batteries, J. Electrochem. Soc. 145 (1998) 1207-1211.

    12. [12]

      [12] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621-629.

    13. [13]

      [13] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains, J. Mater. Chem. 21 (2011) 13205-13212.

    14. [14]

      [14] T. Abdallah, D. Lemordant, B. Claude-Montigny, Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances, J. Power Sources 201 (2012) 353-359.

    15. [15]

      [15] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets, J. Mater. Chem. 22 (2012) 8853-8861.

    16. [16]

      [16] H. Ye, J. Huang, J.J. Xu, A. Khalfan, S.G. Greenbaum, Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends, J. Electrochem. Soc. 154 (2007) A1048-A1057.

    17. [17]

      [17] T.P. Lodge, A unique platform for materials design, Science 321 (2008) 50-51.

    18. [18]

      [18] B. Huang, Z.X. Wang, G.B. Li, et al., Lithium ion conduction in polymer electrolytes based on PAN, Solid State Ion. 85 (1996) 79-84.

    19. [19]

      [19] V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications, Adv. Mater. 24 (2012) 4071-4096.

    20. [20]

      [20] F. Liu, N.A. Hashim, Y.T. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (2011) 1-27.

    21. [21]

      [21] S.A. Hashmi, A. Kumar, S.K. Tripathi, Experimental studies on solid state electrical double layer capacitors using activated charcoal powder electrodes and PVdF-HFP based gel electrolytes, Ionics 10 (2004) 213-220.

    22. [22]

      [22] W. Lu, K. Henry, C. Turchi, J. Pellegrino, Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors, J. Electrochem. Soc. 155 (2008) A361-A367.

    23. [23]

      [23] Y. Kumar, G.P. Pandey, S.A. Hashmi, Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes, J. Phys. Chem. C 116 (2012) 26118-26127.

    24. [24]

      [24] G.P. Pandey, S.A. Hashmi, Y. Kumar, Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes, Energy Fuels 24 (2010) 6644-6652.

    25. [25]

      [25] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.

    26. [26]

      [26] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101-105.

    27. [27]

      [27] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nanotechnol. 4 (2009) 25-29.

    28. [28]

      [28] G.Y. Fan, W.J. Huang, Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics, Chin. Chem. Lett. 25 (2014) 359-363.

    29. [29]

      [29] J. Yang, J.T. Chen, S.X. Yu, X.B. Yan, Q.J. Xue, Synthesis of a graphene nanosheet film with attached amorphous carbon nanoparticles by their simultaneous electrodeposition, Carbon 48 (2010) 2644-2673.

    30. [30]

      [30] K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.

    31. [31]

      [31] B.S. Shen, J.T. Chen, X.B. Yan, Q.J. Xue, Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge, RSC Adv. 2 (2012) 6761-6764.

    32. [32]

      [32] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, et al., Simple method of preparing graphene flakes by an arc-discharge method, J. Phys. Chem. C 113 (2009) 4257-4259.

    33. [33]

      [33] B.S. Shen, W.J. Feng, J.W. Lang, et al., Nitric acid modification of graphene nanosheets prepared by arc-discharge method and their enhanced electrochemical properties, Acta Phys. Chim. Sin. 28 (2012) 1726-1732.

    34. [34]

      [34] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.

    35. [35]

      [35] X. Yang, F. Zhang, L. Zhang, et al., A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications, Adv. Funct. Mater. 23 (2013) 3353-3360.

    36. [36]

      [36] M. Hayyan, F.S. Mjalli, I.M. AlNashef, M.A. Hashim, Investigating the electrochemical windows of ionic liquids, J. Electrochem. Sci. 7 (2012) 8116-8127.

    37. [37]

      [37] G.P. Pandey, S.A. Hashmi, Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors, J. Mater. Chem. A 1 (2013) 3372.

    38. [38]

      [38] C.H. Xu, J. Sun, L. Gao, Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance, J. Mater. Chem. 21 (2011) 11253-11258.

    39. [39]

      [39] G.P. Pandey, A.C. Rastogi, Graphene-based all-solid-state supercapacitor with ionic liquid gel polymer electrolyte, MRS Proc. 1440 (2012) 1279-1287.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Jiayu LiBinli WangYu LuoHongyu WangLei Zhang . The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2025, 36(8): 110220-. doi: 10.1016/j.cclet.2024.110220

    3. [3]

      Zekun ZhangShiji LiQian ZhangShanshan LiLiu YangWei YanHao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742

    4. [4]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    7. [7]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    8. [8]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    9. [9]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    10. [10]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    11. [11]

      Tong PengYupeng XingLan MuChenggang WangNing ZhaoWenbo LiaoJianlei LiGang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039

    12. [12]

      Xiaoyu DuHuan Wang . Tailoring mass transfer on electrochemical fixation of air-abundant molecules. Chinese Chemical Letters, 2025, 36(8): 110276-. doi: 10.1016/j.cclet.2024.110276

    13. [13]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    14. [14]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    15. [15]

      Shiyan AiYaning XuHui ZhouZiwei CuiTiantian WuDan Tian . Superelastic and ultralight covalent organic framework composite aerogels modified with different functional groups for ultrafast adsorbing organic pollutants in water. Chinese Chemical Letters, 2025, 36(10): 110761-. doi: 10.1016/j.cclet.2024.110761

    16. [16]

      Mufan CaoLong PanYaping WangXianwei SuiXiong Xiong LiuShengfa FengPengcheng YuanMin GaoJiacheng LiuSong-Zhu Kure-ChuTakehiko HiharaYang ZhouZheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391

    17. [17]

      Zhangran YeZhixuan YuJingming YaoLei DengYunna GuoHantao CuiChongchong MaChao TaiLiqiang ZhangLingyun ZhuPeng Jia . An ionically conductive and compressible sulfochloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Chinese Chemical Letters, 2025, 36(8): 110272-. doi: 10.1016/j.cclet.2024.110272

    18. [18]

      Ziling JiangChen LiuJie YangXia LiChaochao WeiQiyue LuoZhongkai WuLin LiLiping LiShijie ChengChuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741

    19. [19]

      Jie ChenHannan ChenBingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775

    20. [20]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

Metrics
  • PDF Downloads(0)
  • Abstract views(1147)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return