Citation: Dong-Qing Xu, Zhong-Wen Pan. Phase-transfer catalysis of a new cationic gemini surfactant with ester groups for nucleophilic substitution reaction[J]. Chinese Chemical Letters, ;2014, 25(8): 1169-1173. doi: 10.1016/j.cclet.2014.04.006 shu

Phase-transfer catalysis of a new cationic gemini surfactant with ester groups for nucleophilic substitution reaction

  • Corresponding author: Zhong-Wen Pan, 
  • Received Date: 22 November 2013
    Available Online: 24 March 2014

    Fund Project:

  • A highly effective phase transfer of a quaternary ammonium gemini surfactant with ester groups ((diethylhexanedioate) diyl-α,ω-bis(dimethyl dodecyl ammonium bromide) referred to as 12-10-12) was synthesized with high yield and characterized by infrared spectroscopy, elemental analysis and 1HNMR. Then, 12-10-12 was used as a phase transfer catalyst to study the catalytic effect on the reaction of anhydrous sodium acetate and 4-methylbenzyl chloride. The possible catalytic mechanism and the influence of surfactant concentration, temperature and type are also discussed. The experimental results showed that the catalysis efficiency was more active than the traditional, single-chained surfactant, tetrabutyl ammonium bromide. It also revealed that the reaction was first-order with respect to the concentration of 4-methylbenzyl chloride. The concentration of 4-methylbenzyl chloride grew linearly with the concentration of 12-10-12 and as the reaction temperature increased. The optimum reaction time was 7 h.
  • 加载中
    1. [1]

      [1] E. Pandey, S.K. Upadhyay, Effect of micellar aggregates on the kinetics of oxidation of α-aminoacids by chloramine-T in perchloric acid medium, Colloids Surf. A: Physicochem. Eng. Asp. 269 (2005) 7-15.

    2. [2]

      [2] X.H. Zhao, Z.W. Ye, A facile synthesis of a novel energetic surfactant1-amino-3-dodecyl-1,2,3-triazolium nitrate, Chin. Chem. Lett. 25 (2014) 209-211.

    3. [3]

      [3] H.Y. Fu, M. Li, H. Chen, et al., Higher olefin hydroformylation in organic/aqueous biphasic system accelerated by double long-chain cationic surfactants, J. Mol. Catal. A: Chem. 259 (2006) 156-160.

    4. [4]

      [4] R. Zana, M. Benrraou, R. Rueff, Alkanediyl-α,ω-bis(dimethylalkylammonium bromide)surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree, Langmuir 7 (1991) 1072-1075.

    5. [5]

      [5] F.M. Menger, C.A. Littau, Gemini surfactants: a new class of self-assembling molecules, J. Am. Chem. Soc. 115 (1991) 10083-10090.

    6. [6]

      [6] Q. Xu, L.Y. Wang, F.L. Xing, Synthesis and properties of dissymmetric gemini surfactants, J. Surfact. Deterg. 14 (2011) 85-90.

    7. [7]

      [7] C.J. Kuo, L.H. Lin, Preparation and properties of new ester-linked cleavable gemini surfactants, J. Surfact. Deterg. 14 (2011) 195-201.

    8. [8]

      [8] K. Kuperkar, J. Modi, K. Patel, Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical gemini surfactants, J. Surfact. Deterg. 15 (2012) 107-115.

    9. [9]

      [9] N. Azum, A.M. Asiri, M.A. Rub, Mixed micellization of gemini surfactant with nonionic surfactant in aqueous media: a fluorometric study, Colloid J. 75 (2013) 235-240.

    10. [10]

      [10] T. Yoshimura, T. Ichinokawa, M. Kaji, et al., Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants, J. Colloids Surf. A: 273 (2006) 208-212.

    11. [11]

      [11] A.R. Tehrani-Bagha, H. Oskarsson, C.G. van Ginkel, et al., Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation, J. Colloid Interface Sci. 312 (2007) 444-452.

    12. [12]

      [12] H.E. Ali, Cycloalkylation reactions of fatty amines with a,v-dihaloalkanes: role of bis-quaternary ammonium salts as phase-transfer catalysts, Catal. Commun. 8 (2007) 855-860.

    13. [13]

      [13] L.G. Qiu, A.J. Xie, Y.H. Shen, Micellar-catalyzed alkaline hydrolysis of 24-dinitrochlorobenzene in a cationic gemini surfactant, J. Colloids Surf. A. 260 (2005) 251-254.

    14. [14]

      [14] G.D. Yadav, C.K. Mistry, Oxidation of benzyl alcohol under a synergism of phase transfer catalysis and heteropolyacids, J. Mol. Catal. A. 172 (2001) 135-149.

    15. [15]

      [15] A. Bendjeriou-Sedjerari, G. Derrien, C. Charnay, et al., Contribution of 1H NMR to the investigation of the adsorption of cationic Gemini surfactants with oligooxyethylene spacer group onto silica, J. Colloid Interface Sci. 331 (2009) 281-287.

    16. [16]

      [16] T.M. Zubareva, A.V. Anikeev, E.A. Karpichev, Catalysis of the alkaline hydrolysis of 4-nitrophenyl diethyl phosphonate by cationic dimeric surfactant micelles, Theor. Exp. Chem. 47 (2011) 108-114.

    17. [17]

      [17] G. Cerichelli, L. Luchetti, G. Mancini, G. Savelli, Cyclizations of 2-(v-bromoalkyloxy) phenoxide ions in dicationic surfactants, Langmuir 15 (1999) 2631-2634.

    18. [18]

      [18] W.A. Herrmann, C.W. Kohlpaintner, Water-soluble ligands, metal complexes, and catalysts: synergism of homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. Engl. 32 (1993) 1524-1544.

    19. [19]

      [19] B. Cornils, Bulk and fine chemicals via aqueous biphasic catalysis, J. Mol. Catal. A 143 (1999) 1-10.

    20. [20]

      [20] M. In, V. Bec, O. Aguerre-Chariol, R. Zana, Quaternary ammonium bromide surfactant oligomers in aqueous solution: self-association and microstructure, Langmuir 16 (2000) 141-148.

    21. [21]

      [21] R. Zana, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Adv. Colloid Interface Sci. 97 (2002) 205-253.

    22. [22]

      [22] P.A. Koya, K. Kabir-ud-Din, Ismail, Micellization and thermodynamic parameters of butanediyl-1,4-bis(tetradecyldimethylammonium bromide) gemini surfactant at different temperatures: effect of the addition of 2-methoxyethanol, J. Sol. Chem. 41 (2012) 1271-1281.

    23. [23]

      [23] X.J. Xu, J.W. Guo, X. Zhong, Synthesis and properties of novel cationic gemini surfactants with adamantane spacer, Chin. Chem. Lett. 25 (2014) 367-369.

    24. [24]

      [24] L.G. Qiu, M.J. Cheng, A.J. Xie, Y.H. Shen, Study on the viscosity of cationic gemini surfactant-nonionic polymer complex in water, J. Colloid Interface Sci. 278 (2004) 40-43.

    25. [25]

      [25] C.A. Bunton, L. Robinson, Micellar effects upon nucleophilic aromatic and aliphatic substitution, J. Am. Chem. Soc. 90 (1968) 5972-5979.

    26. [26]

      [26] P.D. Burgo, E. Junquera, E. Aicart, Mixed micellization of a nonionic-cationic surfactant system constituted by n-octyl-b-D-glucopyranoside/dodecyltrimethylammonium bromide/H2O. An electrochemical, thermodynamic, and spectroscopic study, Langmuir 20 (2004) 1587-1596.

    27. [27]

      [27] M.L. Gall, J. Lelièvre, A. Loppinet-Serani, P. Letellier, Thermodynamics and kinetics in micellar media. Reaction of the hydroxide ion with 1,3,5-trinitrobenzene in aqueous solutions of a neutral nonionic surfactant. Effect of the concentration of background electrolyte, J. Phys. Chem. B 107 (2003) 8454-8461.

    28. [28]

      [28] Q.F. Liu, M. Lu, W. Wei, Chloromethylation of 2-chloroethylbenzene catalyzed by micellar catalysis, Sci. China B: Chem. 52 (2009) 893-899.

    29. [29]

      [29] M. Li, H.Y. Fu, M. Yang, et al., Micellar effect of cationic gemini surfactants on organic/aqueous biphasic catalytic hydroformylation of 1-dodecene, J. Mol. Catal. A: Chem. 235 (2005) 130-136.

  • 加载中
    1. [1]

      Yan ZouYuting XueChenxue DuWenyang FuBin XiaYu HeLiang AoXiaoshu LvGuangming Jiang . Anhydrous sodium sulfate microparticles for efficient water separation from surfactant-stabilized water-in-oil emulsions. Chinese Chemical Letters, 2025, 36(11): 110814-. doi: 10.1016/j.cclet.2025.110814

    2. [2]

      Linfeng LiBao WangTiantong ZhangXinyuan WangDingqiang FengWei LiJiangjiexing WuJinli Zhang . Identifying the catalytic active site of durable Ru-based liquid-phase catalyst for acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(10): 111303-. doi: 10.1016/j.cclet.2025.111303

    3. [3]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    4. [4]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    5. [5]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    6. [6]

      Xiaoli ZhongLiangsheng ChenHao XuTianhang JiangZhengyi HuaFancheng TanXiaoya MaoZiquan FanZhiwei LiJun ZengShu-Hai Lin . Development of a comprehensive computational pipeline for cardiolipin atlas in an intermittent fasting model. Chinese Chemical Letters, 2025, 36(12): 111027-. doi: 10.1016/j.cclet.2025.111027

    7. [7]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    8. [8]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    9. [9]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    10. [10]

      Yan-E ZhangYingtao JiangYun ZhangHu WangZitong WuRui LiYumiao MaTao Tu . Enantioselective synthesis of bulky planar-chiral pillar[n]arenes through dynamic kinetic resolution. Chinese Chemical Letters, 2025, 36(12): 111201-. doi: 10.1016/j.cclet.2025.111201

    11. [11]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    12. [12]

      Jun-Yang WangYu-Qing WeiQing-Ning WangZhi-Guo WangRui HongLisha YiPing XuJia-Zhuang XuZhong-Ming LiBaisong Zhao . Mucus-inspired lubricative antibacterial coating to reduce airway complications in an intubation cynomolgus monkey model. Chinese Chemical Letters, 2025, 36(8): 110559-. doi: 10.1016/j.cclet.2024.110559

    13. [13]

      Han-Bin LiuXiaoyu ChengZhou GuoJuan YangFuwen TanDonghui LanJian-Ping TanBing YiWeixin ZhaiQing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149

    14. [14]

      Baolei LiDa WangMiao YuChaozheng HeXue LiJing ZhaiMdmahadi HasanChenxu ZhaoMin WangDingcai Shen . Accelerating multi-objective catalytic material design: A model-based method. Chinese Chemical Letters, 2025, 36(12): 110454-. doi: 10.1016/j.cclet.2024.110454

    15. [15]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    16. [16]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    17. [17]

      Zhenguo ZhangLanyang LiXinlong ZongYongheng LvShuanglei LiuLiang JiXuefei ZhaoZhenhua JiaTeck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504

    18. [18]

      Yan-Ran WengWen-Fu TianWen-Jing DingBi-He RenDe-Hou LiuJia-Ying TangFeng ZhouXiao-Gang ChenXian-Jiang SongHui-Peng LvYong Ai . Homochiral organic ferroelastics with plastic phase transition. Chinese Chemical Letters, 2025, 36(7): 110188-. doi: 10.1016/j.cclet.2024.110188

    19. [19]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    20. [20]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

Metrics
  • PDF Downloads(0)
  • Abstract views(1242)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return