Citation: Peng-Fei Xiao, Rui Guo, Shao-Qiang Huang, Heng-Jun Cui, Sheng Ye, Zhiyuan Zhang. Discovery of dipeptidyl peptidase IV (DPP4) inhibitors based on a novel indole scaffold[J]. Chinese Chemical Letters, ;2014, 25(05): 673-676. doi: 10.1016/j.cclet.2014.03.047 shu

Discovery of dipeptidyl peptidase IV (DPP4) inhibitors based on a novel indole scaffold

  • Corresponding author: Sheng Ye,  Zhiyuan Zhang, 
  • Received Date: 11 February 2014
    Available Online: 17 March 2014

    Fund Project: This work is supported by the National Natural Science Foundation of China (No. 21274154). (No. 21274154)

  • Dipeptidyl peptidase IV (DPP4) inhibitors are proven in the treatment of type 2 diabetes. We designed and synthesized a series of novel indole compounds that selectively inhibit the activity of DPP4 over dipeptidyl peptidase 9 (DPP9) (>200 fold). We further co-crystallized DPP4 with indole sulfonamide (compound 1) to confirm a proposed binding mode. Good metabolic stability of the indole compounds represents another positive attribute for further development.
  • 加载中
    1. [1]

      [1] D.J. Drucker, M.A. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes, Lancet 368 (2006) 1696-1705.

    2. [2]

      [2] G.A. Herman, P.P. Stein, N.A. Thornberry, et al., Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: focus on sitagliptin practice, Clin. Pharmacol. Ther. 81 (2007) 761-767.

    3. [3]

      [3] Y.L. He, A. Horowitz, C.E. Watson, et al., Vildagliptin does not affect C-peptide clearance in patients with type 2 diabetes, J. Clin. Pharmacol. 47 (2007) 127-131.

    4. [4]

      [4] E.M. Migoya, R. Bergeron, J.L. Miller, et al., Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1, Clin. Pharmacol. Ther. 88 (2010) 801- 808.

    5. [5]

      [5] (a) D. Kim, L.P. Wang, M. Beconi, et al., (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6- dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan- 2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes, J. Med. Chem. 48 (2005) 141-151; (b) N.A. Thornberry, A.E. Weber, Discovery of JANUVIA (Sitagliptin), a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes, Curr. Top. Med. Chem. 7 (2007) 557-568; (c) K.A. Lyseng-Williamson, Sitagliptin, Drugs 67 (2007) 587-597.

    6. [6]

      [6] (a) D.J. Augeri, J.A. Robl, D.A. Betebenner, et al., Discovery and preclinical profile of saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes, J. Med. Chem. 48 (2005) 5025-5037; (b) A.A. Tahrani, M.K. Piya, A.H. Barnett, Saxagliptin: a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus, Adv. Ther. 26 (2009) 249-262; (c) C.F. Deacon, J.J. Holst, Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes, Adv. Ther. 26 (2009) 488-499.

    7. [7]

      [7] M. Eckhardt, E. Langkop, M. Mark, M. Tadayyon, et al., 8-[(3R)-3-aminopiperidin- 1-yl]-7-(but-2-yn-1-yl)-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-3, 7-dihydro- 1H-purine-2,6-dione a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type-2 diabetes, J. Med. Chem. 50 (2007) 6450-6453.

    8. [8]

      [8] (a) J. Feng, Z.Y. Zhang, M.B. Wallace, et al., Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV, J. Med. Chem. 50 (2007) 2297-2300; (b) Z.Y. Zhang, M.B. Wallace, J. Feng, et al., Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 54 (2011) 510-524; (c) M.B. Wallace, J. Feng, Z.Y. Zhang, et al., Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors, Bioorg. Med. Chem. Lett. 18 (2008) 2362-2367; (d) B. Lam, Z.Y. Zhang, J.A. Stafford, et al., Structure-based design of pyridopyrimidinediones as dipeptidyl peptidase IV inhibitors, Bioorg. Med. Chem. Lett. 22 (2012) 6628-6631.

    9. [9]

      [9] (a) N. Ervinna, T. Mita, E. Yasunari, et al., Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice, Endocrinology 154 (2013) 1260-1270; (b) M.K. Kim, Y.N. Chae, H.D. Kim, et al., DA-1229, a novel and potent DPP4 inhibitor, improves insulin resistance and delays the onset of diabetes, Life Sci. 90 (2012) 21-29.

    10. [10]

      [10] M. Brunavs, P. Cowley, S.E. Ward, P. Weber, Recent disclosures of clinical candidates, Drugs Future 38 (2013) 127-133.

    11. [11]

      [11] H.G. Dai, J.T. Li, T.S. Li, Efficient and practical synthesis of mannich bases related to gramine mediated by zinc chloride, Synth. Commun. 36 (2006) 1829-1835.

    12. [12]

      [12] T. Haruko, M. Minoru, K. Yuichi, Intramolecular photoreactions of phthalimidealkene systems. Oxetane formation of N-(v-indol-3-ylalkyl)phthalimides, Chem. Pharm. Bull. 36 (1988) 2853-2863.

    13. [13]

      [13] G.R. Lankas, B. Leiting, R.S. Roy, et al., Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes, Diabetes 54 (2005) 2988-2994.

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    4. [4]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    7. [7]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    13. [13]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    15. [15]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    16. [16]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    17. [17]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    18. [18]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return