Citation: Xiao-Li Zhu, Pei-Yu Wanga, Chao Peng, Juan Yang, Xing-Bin Yan. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents[J]. Chinese Chemical Letters, ;2014, 25(6): 929-932. doi: 10.1016/j.cclet.2014.03.039 shu

Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents

  • Corresponding author: Xing-Bin Yan, 
  • Received Date: 7 January 2014
    Available Online: 12 March 2014

    Fund Project:

  • In this paper, activated carbons (ACs) with high specific surface areas were successfully synthesized by simple one-step carbonization-activation from paulownia sawdust biomass, and the effects of the synthetic conditions on their CO2 capture capacity were investigated as well. The results show that, when the mass ratio between activator and biomass is 4, the activation temperature is 700℃ and the activation time is 1 h, as-made AC provides the most micropores for CO2 adsorption. As a consequence, the maximum CO2 uptake of 8.0 mmol/g is obtained at 0℃ and 1 bar.
  • 加载中
    1. [1]

      [1] A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Post-combustion CO2 capture using solid sorbents: a review, Ind. Eng. Chem. Res. 51 (2012) 1438-1463.

    2. [2]

      [2] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.

    3. [3]

      [3] X.J. Feng, M. Yan, X. Zhang, M. Bao, Preparation and application of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide, Chin. Chem. Lett. 22 (2011) 643-646.

    4. [4]

      [4] D. Aaron, C. Tsouris, Separation of CO2 from flue gas: a review, Sep. Sci. Technol. 40 (2005) 321-348.

    5. [5]

      [5] M. Sevilla, A.B. Fuertes, CO2 adsorption by activated templated carbons, J. Colloid Interface Sci. 366 (2012) 147-154.

    6. [6]

      [6] Y.G. Jin, S.C. Hawkins, C.P. Huynh, S. Su, Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture, Energ. Environ. Sci. 6 (2013) 2591-2596.

    7. [7]

      [7] R. Serna-Guerrero, Y. Belmabkhout, A. Sayari, Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica, Chem. Eng. J. 158 (2010) 513-519.

    8. [8]

      [8] B. Aziz, G.Y. Zhao, N. Hedin, Carbon dioxide sorbents with propylamine groupssilica functionalized with a fractional factorial design approach, Langmuir 27 (2011) 3822-3834.

    9. [9]

      [9] Q.P. Lin, T. Wu, S.T. Zheng, X.H. Bu, P.Y. Feng, A chiral tetragonal magnesiumcarboxylate framework with nanotubular channels, Chem. Commun. 47 (2011) 11852-11854.

    10. [10]

      [10] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for Sstorage of carbon dioxide at room temperature, J. Am. Chem. Soc. 127 (2005) 17998-17999.

    11. [11]

      [11] A. Demessence, D.M. D'Alessandro, M.L. Foo, J.R. Long, Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalised with ethylenediamine, J. Am. Chem. Soc. 131 (2009) 8784-8786.

    12. [12]

      [12] G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, Adv. Mater. 22 (2010) 853-857.

    13. [13]

      [13] M.G. Plaza, C. Pevida, C.F. Martín, et al., Developing almond shell-derived activated carbons as CO2 adsorbents, Sep. Purif. Technol. 71 (2010) 102-106.

    14. [14]

      [14] H.R. Wei, S.B. Deng, B.Y. Hu, et al., Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores, Chem. Sus. Chem. 5 (2012) 2354-2360.

    15. [15]

      [15] A.N.A. El-Hendawy, A.J. Alexander, R.J. Andrews, G. Forrest, Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks, J. Anal. Appl. Pyrolysis 82 (2008) 272-278.

    16. [16]

      [16] M. Sevilla, A.B. Fuertes, Sustainable porous carbons with a superior performance for CO2 capture, Energ. Environ. Sci. 4 (2011) 1765-1771.

    17. [17]

      [17] M. Sevilla, C. Falco, M.M. Titirici, A.B. Fuertes, High-performance CO2 sorbents from algae, RSC Adv. 2 (2012) 12792-12797.

    18. [18]

      [18] G. Dobele, T. Dizhbite, M.V. Gil, A. Volperts, T.A. Centeno, Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture, Biomass Bioenergy 46 (2012) 145-154.

    19. [19]

      [19] R.T. Wang, P.Y. Wang, X.B. Yan, et al., Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance, ACS Appl. Mater. Inter. 4 (2012) 580'-5806.

    20. [20]

      [20] M. Olivares-Marín, M.M. Maroto-Valer, Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent, Fuel Process. Technol. 92 (2011) 322-329.

    21. [21]

      [21] M.M. Maroto-Valer, Z. Tang, Y.Z. Zhang, CO2 capture by activated and impregnated anthracites, Fuel Process. Technol. 86 (2005) 1487-1502.

    22. [22]

      [22] N.P. Wickramaratne,M.Jaroniec, Importance of small micropores inCO2 captureby phenolic resin-based activated carbonspheres, J. Mater.Chem.A1(2013)112-116.

  • 加载中
    1. [1]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    2. [2]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    3. [3]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    4. [4]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    5. [5]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    6. [6]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    9. [9]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    10. [10]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    11. [11]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    12. [12]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    13. [13]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    14. [14]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    15. [15]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    16. [16]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    17. [17]

      Jingtao BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Corrigendum to “Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation” [Chinese Chemical Letters 35 (2024) 109639]. Chinese Chemical Letters, 2025, 36(7): 110867-. doi: 10.1016/j.cclet.2025.110867

    18. [18]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    19. [19]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    20. [20]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

Metrics
  • PDF Downloads(0)
  • Abstract views(1195)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return