Citation:
Xiao-Li Zhu, Pei-Yu Wanga, Chao Peng, Juan Yang, Xing-Bin Yan. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents[J]. Chinese Chemical Letters,
;2014, 25(6): 929-932.
doi:
10.1016/j.cclet.2014.03.039
-
In this paper, activated carbons (ACs) with high specific surface areas were successfully synthesized by simple one-step carbonization-activation from paulownia sawdust biomass, and the effects of the synthetic conditions on their CO2 capture capacity were investigated as well. The results show that, when the mass ratio between activator and biomass is 4, the activation temperature is 700℃ and the activation time is 1 h, as-made AC provides the most micropores for CO2 adsorption. As a consequence, the maximum CO2 uptake of 8.0 mmol/g is obtained at 0℃ and 1 bar.
-
Keywords:
- Biomass,
- Activated carbon,
- CO2 absorption,
- KOH activation
-
-
-
[1]
[1] A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Post-combustion CO2 capture using solid sorbents: a review, Ind. Eng. Chem. Res. 51 (2012) 1438-1463.
-
[2]
[2] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.
-
[3]
[3] X.J. Feng, M. Yan, X. Zhang, M. Bao, Preparation and application of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide, Chin. Chem. Lett. 22 (2011) 643-646.
-
[4]
[4] D. Aaron, C. Tsouris, Separation of CO2 from flue gas: a review, Sep. Sci. Technol. 40 (2005) 321-348.
-
[5]
[5] M. Sevilla, A.B. Fuertes, CO2 adsorption by activated templated carbons, J. Colloid Interface Sci. 366 (2012) 147-154.
-
[6]
[6] Y.G. Jin, S.C. Hawkins, C.P. Huynh, S. Su, Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture, Energ. Environ. Sci. 6 (2013) 2591-2596.
-
[7]
[7] R. Serna-Guerrero, Y. Belmabkhout, A. Sayari, Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica, Chem. Eng. J. 158 (2010) 513-519.
-
[8]
[8] B. Aziz, G.Y. Zhao, N. Hedin, Carbon dioxide sorbents with propylamine groupssilica functionalized with a fractional factorial design approach, Langmuir 27 (2011) 3822-3834.
-
[9]
[9] Q.P. Lin, T. Wu, S.T. Zheng, X.H. Bu, P.Y. Feng, A chiral tetragonal magnesiumcarboxylate framework with nanotubular channels, Chem. Commun. 47 (2011) 11852-11854.
-
[10]
[10] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for Sstorage of carbon dioxide at room temperature, J. Am. Chem. Soc. 127 (2005) 17998-17999.
-
[11]
[11] A. Demessence, D.M. D'Alessandro, M.L. Foo, J.R. Long, Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalised with ethylenediamine, J. Am. Chem. Soc. 131 (2009) 8784-8786.
-
[12]
[12] G.P. Hao, W.C. Li, D. Qian, A.H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, Adv. Mater. 22 (2010) 853-857.
-
[13]
[13] M.G. Plaza, C. Pevida, C.F. Martín, et al., Developing almond shell-derived activated carbons as CO2 adsorbents, Sep. Purif. Technol. 71 (2010) 102-106.
-
[14]
[14] H.R. Wei, S.B. Deng, B.Y. Hu, et al., Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores, Chem. Sus. Chem. 5 (2012) 2354-2360.
-
[15]
[15] A.N.A. El-Hendawy, A.J. Alexander, R.J. Andrews, G. Forrest, Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks, J. Anal. Appl. Pyrolysis 82 (2008) 272-278.
-
[16]
[16] M. Sevilla, A.B. Fuertes, Sustainable porous carbons with a superior performance for CO2 capture, Energ. Environ. Sci. 4 (2011) 1765-1771.
-
[17]
[17] M. Sevilla, C. Falco, M.M. Titirici, A.B. Fuertes, High-performance CO2 sorbents from algae, RSC Adv. 2 (2012) 12792-12797.
-
[18]
[18] G. Dobele, T. Dizhbite, M.V. Gil, A. Volperts, T.A. Centeno, Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture, Biomass Bioenergy 46 (2012) 145-154.
-
[19]
[19] R.T. Wang, P.Y. Wang, X.B. Yan, et al., Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance, ACS Appl. Mater. Inter. 4 (2012) 580'-5806.
-
[20]
[20] M. Olivares-Marín, M.M. Maroto-Valer, Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent, Fuel Process. Technol. 92 (2011) 322-329.
-
[21]
[21] M.M. Maroto-Valer, Z. Tang, Y.Z. Zhang, CO2 capture by activated and impregnated anthracites, Fuel Process. Technol. 86 (2005) 1487-1502.
-
[22]
[22] N.P. Wickramaratne,M.Jaroniec, Importance of small micropores inCO2 captureby phenolic resin-based activated carbonspheres, J. Mater.Chem.A1(2013)112-116.
-
[1]
-
-
-
[1]
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
-
[2]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[3]
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
-
[4]
Zhonghan Xu , Yuejia Li , Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075
-
[5]
Jing Zhang , Su Zhang , Qiqi Li , Linken Ji , Yutong Li , Yukang Ren , Xiaobei Zang , Ning Cao , Han Hu , Peng Liang , Zhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114
-
[6]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009
-
[7]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[8]
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
-
[9]
Hui Bian , Xinyi Yuan , Nan Zhang , Zhuo Xu , Juhong Lian , Ruibin Jiang , Junqing Yan , Deng Li , Shengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034
-
[10]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[11]
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
-
[12]
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
-
[13]
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
-
[14]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[15]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[16]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[17]
Jingtao Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Corrigendum to “Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation” [Chinese Chemical Letters 35 (2024) 109639]. Chinese Chemical Letters, 2025, 36(7): 110867-. doi: 10.1016/j.cclet.2025.110867
-
[18]
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
-
[19]
Qiyan Wu , Qing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384
-
[20]
Huazhe Wang , Chenghuan Qiao , Chuchu Chen , Bing Liu , Juanshan Du , Qinglian Wu , Xiaochi Feng , Shuyan Zhan , Wan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1195)
- HTML views(38)
Login In
DownLoad: