Citation: Hui Liu, Zhan-Ting Li. Metalloporphyrin receptors for histidine-containing peptides[J]. Chinese Chemical Letters, ;2014, 25(05): 659-662. doi: 10.1016/j.cclet.2014.03.034 shu

Metalloporphyrin receptors for histidine-containing peptides

  • Corresponding author: Hui Liu, 
  • Received Date: 6 January 2014
    Available Online: 13 March 2014

    Fund Project: This research was financially supported by Basic Science Research Program through the National Natural Science Foundation of China (No. 21302149). (No. 21302149)

  • Two new ditopic metalloporphyrin receptors constructed by combining metalloporphyrin with crown ethers have been prepared and characterized. 1H NMR and MS spectra confirmed the complexation of receptor with peptide driven by coordination interaction and hydrogen bonding. UV/vis experiments revealed that the receptors exhibited high binding affinity to histidine-containing peptides. These receptors could differentiate short peptides of C-terminal histidine and N-terminal histidine and formed the most stable complexes with tripeptide.
  • 加载中
    1. [1]

      [1] M. Kruppa, C. Mandl, S. Miltschitzky, B. Konig, A luminescent receptor with affinity for N-terminal histidine in peptides in aqueous solution, J. Am. Chem. Soc. 127 (2005) 3362-3365.

    2. [2]

      [2] A.T. Wright, E.V. Anslyn, Cooperative metal-coordination and ion pairing in tripeptide recognition, Org. Lett. 6 (2004) 1341-1344.

    3. [3]

      [3] A. Buryak, K. Severin, An organometallic chemosensor for the sequence-selective detection of histidine- and methionine-containing peptides in water at neutral pH, Angew. Chem. Int. Ed. 43 (2004) 4771-4774.

    4. [4]

      [4] M. Sirish, V.A. Chertkov, H.J. Schneider, Porphyrin-based peptide receptors: syntheses and NMR analysis, Chem. Eur. J. 8 (2002) 1181-1188.

    5. [5]

      [5] R. Arienzo, J.D. Kilburn, Combinatorial libraries of diamidopyridine-derived ‘tweezer' receptors and sequence selective binding of peptides, Tetrahedron 58 (2002) 711-799.

    6. [6]

      [6] T. Schrader, S. Koch, Artificial protein sensors, Mol. Bio. Syst. 3 (2007) 241-248.

    7. [7]

      [7] C. Schmuck, L. Geiger, Dipeptide binding in water by a de novo designed guanidiniocarbonylpyrrole receptor, J. Am. Chem. Soc. 126 (2004) 8898-8899.

    8. [8]

      [8] T. Braxmeier, M. Demarcus, T. Fessmann, S. McAteer, J.D. Kilburn, Identification of sequence selective receptors for peptides with a carboxylic acid terminus, Chem. Eur. J. 7 (2001) 1889-1898.

    9. [9]

      [9] A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(Ⅱ)- dipicolylamine)-based artificial receptors, J. Am. Chem. Soc. 126 (2004) 2454- 2463.

    10. [10]

      [10] C.P. Mandl, B. Konig, Luminescent crown ether amino acids: selective binding to N-terminal lysine in peptides, J. Org. Chem. 70 (2005) 670-674.

    11. [11]

      [11] P. Gunning, A.C. Benniston, R.D. Peacock, A modular ditopic crown-shielded phosphate ion-pair receptor, Chem. Commun. (2004) 2226-2227.

    12. [12]

      [12] A. Spath, B. Konig, Ditopic crown ether-guanidinium ion receptors for the molecular recognition of amino acids and small peptides, Tetrahedron 66 (2010) 1859- 1873.

    13. [13]

      [13] S.I. Sasaki, A. Hashizume, D. Citterio, E. Fuji, K. Suzuki, Fluororeceptor for zwitterionic form amino acids in aqueous methanol solution, Tetrahedron Lett. 43 (2002) 7243-7245.

    14. [14]

      [14] G.W. Gokel, E. Abel, Comprehensive Supramolecular Chemistry, vol. 1, Pergamon Press, New York, 1996, pp. 511-535.

    15. [15]

      [15] J.L. Hou, H.P. Yi, X.B. Shao, et al., Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines, Angew. Chem. Int. Ed. 45 (2006) 796-800.

    16. [16]

      [16] D. Paul, F. Melin, C. Hirtz, et al., Induced fit process in the selective distal binding of imidazoles in zinc(Ⅱ) porphyrin receptors, Inorg. Chem. 42 (2003) 3779-3787.

    17. [17]

      [17] A. Satake, Y. Kobuke, Dynamic supramolecular porphyrin systems, Tetrahedron 61 (2005) 13.

    18. [18]

      [18] J.K.M. Sanders, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol. 3, Academic Press, New York, 2000, pp. 347-368.

    19. [19]

      [19] H.J. Schneider, T.J. Liu, M. Sirish, V. Malinovski, Dispersive interactions in supramolecular porphyrin complexes, Tetrahedron 58 (2002) 779-786.

    20. [20]

      [20] M. Sirish, H.J. Schneider, Electrostatic interactions between positively charged porphyrins and nucleotides or amides: buffer-dependent dramatic changes of binding affinities and modes, Chem. Commun. (2000) 23-24.

    21. [21]

      [21] M. Sirish, H.J. Schneider, Porphyrin derivatives as water-soluble receptors for peptides, Chem. Commun. (1999) 907-908.

    22. [22]

      [22] X.B. Shao, X.K. Jiang, X. Zhao, et al., Recognition through self-assembly. A quadruply- hydrogen-bonded, strapped porphyrin cleft that binds dipyridyl molecules and a [2]rotaxane, J. Org. Chem. 69 (2004) 899-907.

    23. [23]

      [23] H. Liu, X.B. Shao, M.X. Jia, et al., Selective recognition of sodium cyanide and potassium cyanide by diaza-crown ether-capped Zn-porphyrin receptors in polar solvents, Tetrahedron 61 (2005) 8095-8100.

    24. [24]

      [24] X.B. Shao, X.Z. Wang, X.K. Jiang, Z.T. Li, S.Z. Zhu, A novel strapped porphyrin receptor for molecular recognition, Tetrahedron 59 (2003) 4881-4889.

    25. [25]

      [25] K. Senokuchi, H. Nakai, Y. Nakayama, et al., New orally active serine protease inhibitors: structural requirements for their good oral activity, J. Med. Chem. 38 (1995) 4508-4517.

    26. [26]

      [26] S. Belanger, M.H. Keefe, J.L. Welch, J.T. Hupp, Rapid derivatization of mesoporous thin-film materials based on Re(I) zinc-porphyrin ‘molecular squares': selective modification of mesopore size and shape by binding of aromatic nitrogen donor ligands, Coord. Chem. Rev. 190-192 (1999) 29-45.

    27. [27]

      [27] V. Rudiger, H.J. Schneider, V.P. Solov'ev, V.P. Kazachenko, O.A. Raevsky, Crown ether-ammonium complexes: binding mechanisms and solvent effects, Eur. J. Org. Chem. 8 (1999) 1847-1856.

    28. [28]

      [28] A. Spath, B. Konig, Modular synthesis of di- and tripeptides of luminescent crown ether aminocarboxylic acids, Tetrahedron 65 (2009) 690-695.

    29. [29]

      [29] K.A. Conners, Binding Constants: The Measurement of Molecular Complex Stability, Wiley, New York, 1987.

    30. [30]

      [30] J.W. Steed, J.L. Atwood, Supramol. Chem. (2000) 120-121.

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    3. [3]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    4. [4]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    5. [5]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    6. [6]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    7. [7]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    8. [8]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    9. [9]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    10. [10]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    11. [11]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    12. [12]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    13. [13]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    14. [14]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    15. [15]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    16. [16]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(0)
  • Abstract views(605)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return