Citation: Min Jiang, Hai-Jun Yang, Yong Li, Zhi-Ying Jia, Hua Fu. Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature[J]. Chinese Chemical Letters, ;2014, 25(05): 715-719. doi: 10.1016/j.cclet.2014.03.018 shu

Metal-free synthesis of substituted phenols from arylboronic acids in water at room temperature

  • Corresponding author: Hai-Jun Yang, 
  • Received Date: 6 November 2013
    Available Online: 20 February 2014

    Fund Project: The authors thank the National Natural Science Foundation of China (No. 21105054) for financial support. (No. 21105054)

  • A convenient, efficient and practical metal-free method for the synthesis of substituted phenols from arylboronic acids has been developed. The protocol uses hydrogen peroxide as a hydroxylating agent, ammonium bicarbonate as an additive, and the reactions were conveniently performed in water at room temperature. Themethod shows an excellent tolerance of functional groups, so it will find a wide variety of applications in academic and industrial research.
  • 加载中
    1. [1]

      [1] (a) Z. Rappoport, The Chemistry of Phenols, Wiley-VCH, Weinheim, 2003; (b) J.H.P. Tyman, Synthetic and Natural Phenols, Elsevier, New York, 1996; (c) K. Weissermel, H.J. Arpe, Industrial Organic Chemistry, Wiley VCH, Weinheim, 1997; (d) J.F. Hartwig, Palladium-catalyzed synthesis of aryl ethers and related compounds containing S and Se, in: E.I. Negishi (Ed.), Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley-Interscience, New York, 2002; (e) S. Suwanprasop, T. Nhujak, S. Roengsumran, A. Petsom, Petroleum marker dyes synthesized from cardanol and aniline derivatives, Ind. Eng. Chem. Res. 43 (2004) 4973-4978; (f) S.A. Lawrence, Amines: Synthesis, Properties and Application, Cambridge University Press, Cambridge, 2004.

    2. [2]

      [2] (a) K.W. Anderson, T. Ikawa, R.E. Tundel, S.L. Buchwald, The selective reaction of aryl halides with KOH: synthesis of phenols, aromatic ethers, and benzofurans, J. Am. Chem. Soc. 128 (2006) 10694-11695; (b) M.C. Willis, Palladium catalysed couplings of ammonia and hydroxide with aryl halides: the direct synthesis of primary anilines and phenols, Angew. Chem. Int. Ed. 46 (2007) 3402-3404; (c) A.G. Sergeev, T. Schulz, C. Torborg, et al., Palladium-catalyzed hydroxylation of aryl halides under ambient conditions, Angew. Chem. Int. Ed. 48 (2009) 7595- 7599; (d) T. Schulz, C. Torborg, B. Schäffner, et al., Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides, Angew. Chem. Int. Ed. 48 (2009) 918-921; (e) B.J. Gallon, R.W. Kojima, R.B. Kaner, P.L. Diaconescu, Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water, Angew. Chem. Int. Ed. 46 (2007) 7251-7254; (f) G.S. Chen, A.S.C. Chan, F.Y. Kwong, Palladium-catalyzed C-O bond formation: direct synthesis of phenols and aryl/alkyl ethers from activated aryl halides, Tetrahedron Lett. 48 (2007) 473-476.

    3. [3]

      [3] (a) D.S. Yang, H. Fu, A simple and practical copper-catalyzed approach to substituted phenols from aryl halides by using water as the solvent, Chem. Eur. J. 16 (2010) 2366-2370; (b) C.M. Kormos, N.E. Leadbeater, Direct conversion of aryl halides to phenols using high-temperature or near-critical water and microwave heating, Tetrahedron 62 (2006) 4728-4732; (c) A. Tlili, N. Xia, F. Monnier, M. Taillefer, A very simple copper-catalyzed synthesis of phenols employing hydroxide salts, Angew. Chem. Int. Ed. 48 (2009) 8725-8728; (d) D.B. Zhao, N.J. Wu, S. Zhang, et al., Synthesis of phenol, aromatic ether, and benzofuran derivatives by copper-catalyzed hydroxylation of aryl halides, Angew. Chem. Int. Ed. 48 (2009) 8729-8732.

    4. [4]

      [4] (a) T. Ishiyama, M. Murata, N. Miyaura, Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters, J. Org. Chem. 60 (1995) 7508-7510; (b) M. Murata, S. Watanabe, Y. Masuda, Novel palladium(0)-catalyzed coupling reaction of dialkoxyborane with aryl halides: convenient synthetic route to arylboronates, J. Org. Chem. 62 (1997) 6458-6459; (c) M. Murata, T. Oyama, S. Watanabe, Y. Masuda, Palladium-catalyzed borylation of aryl halides or triflates with dialkoxyborane: a novel and facile synthetic route to arylboronates, J. Org. Chem. 65 (2000) 164-168; (d) C. Kleeberg, L. Dang, Z. Lin, T.B. Marder, A facile route to aryl boronates: roomtemperature, copper-catalyzed borylation of aryl halides with alkoxy diboron reagents, Angew. Chem. Int. Ed. 48 (2008) 5350-5354.

    5. [5]

      [5] J.M. Xu, X.Y. Wang, C.W. Shao, et al., Highly efficient synthesis of phenols by copper-catalyzed oxidative hydroxylation of arylboronic acids at room temperature in water, Org. Lett. 12 (2010) 1964-1967.

    6. [6]

      [6] H.J. Yang, Y. Li, M. Jiang, J.M. Wang, H. Fu, General copper-catalyzed transformations of functional groups from arylboronic acids in water, Chem. Eur. J. 17 (2011) 5652-5660.

    7. [7]

      [7] P.R. Schreiner, Metal-free organocatalysis through explicit hydrogen bonding interactions, Chem. Soc. Rev. 32 (2003) 289-296.

    8. [8]

      [8] H. Pracejus, Organische Katalysatoren, LXI. Asymmetrische synthesen mit ketenen, I. Alkaloid-katalysierte asymmetrische synthesen von-phenyl-propions aureestern, Justus Liebigs Ann. Chem. 634 (1960) 9-22.

    9. [9]

      [9] V. Prelog, M. Wilhelm, Untersuchungen üer asymmetrische synthesen VI. Der reaktionsmechanismus und der sterische verlauf der asymmetrischen cyanhydrin- synthese, Helv. Chim. Acta 37 (1954) 1634-1660.

    10. [10]

      [10] (a) A. Erkkilä, I. Majander, P.M. Pihko, Iminium catalysis, Chem. Rev. 107 (2007) 5416-5470; (b) S. Mukherjee, J.W. Yang, S. Hoffmann, B. List, Asymmetric enamine catalysis, Chem. Rev. 107 (2007) 5471-5569; (c) R.P. Wurz, Chiral dialkylaminopyridine catalysts in asymmetric synthesis, Chem. Rev. 107 (2007) 5570-5595; (d) M.J. Gaunt, C.C.C. Johansson, Recent developments in the use of catalytic asymmetric ammonium enolates in chemical synthesis, Chem. Rev. 107 (2007) 5596-5605; (f) D. Enders, O. Niemeier, A. Henseler, Organocatalysis by N-heterocyclic carbenes, Chem. Rev. 107 (2007) 5606-5655; (g) T. Hashimoto, K. Maruoka, Recent development and application of chiral phase-transfer catalysts, Chem. Rev. 107 (2007) 5656-5682; (h) I. Atodiresei, I. Schiffers, C. Bolm, Stereoselective anhydride openings, Chem. Rev. 107 (2007) 5683-5712; (i) A.G. Doyle, E.N. Jacobsen, Small-molecule H-bond donors in asymmetric catalysis, Chem. Rev. 107 (2007) 5713-5743; (j) T. Akiyama, Stronger brønsted acids, Chem. Rev. 107 (2007) 5744-5758; (k) D.E.A. Colby, S.M. Mennen, Y. Xu, S.J. Miller, Asymmetric catalysis mediated by synthetic peptides, Chem. Rev. 107 (2007) 5759-5812; (l) N.E. Kamber, W. Jeong, R.M. Waymouth, et al., Organocatalytic ring-opening polymerization, Chem. Rev. 107 (2007) 5813-5840; (m) E.M. McGarrigle, E.L. Myers, O. Illa, et al., Chalcogenides as organocatalysts, Chem. Rev. 107 (2007) 5841-5883.

    11. [11]

      [11] (a) C. Zhu, R. Wang, J.R. Falck, Mild and rapid hydroxylation of aryl/heteroaryl boronic acids and boronate esters with N-oxides, Org. Lett. 14 (2012) 3494-3497; (b) J. Simon, S. Salzbrunn, G.A. Olah, Regioselective conversion of arylboronic acids to phenols and subsequent coupling to symmetrical diaryl ethers, J. Org. Chem. 66 (2001) 633-634; (c) A. Gogoi, U. Bora, An iodine-promoted, mild and efficient method for the synthesis of phenols from arylboronic acids, Synlett 23 (2012) 1079-1081; (d) P.S. Fier, J.F. Hartwig, Synthesis of difluoromethyl ethers with difluoromethyltriflate, Angew. Chem. Int. Ed. 52 (2013) 2092-2095.

    12. [12]

      [12] (a) Y.Q. Zou, J.R. Chen, X.P. Liu, et al., Highly efficient aerobic oxidative hydroxylation of arylboronic acids: photoredox catalysis using visible light, Angew. Chem. Int. Ed. 51 (2012) 784-788; (b) S.P. Pitre, C.D. McTiernan, H. Ismaili, J.C. Scaiano, Mechanistic insights and kinetic analysis for the oxidative hydroxylation of arylboronic acids by visible light photoredox catalysis: a metal-free alternative, J. Am. Chem. Soc. 135 (2013) 13286-13289.

    13. [13]

      [13] A. Sikora, J. Zielonka, M. Lopez, et al., Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway, Chem. Res. Toxicol. 24 (2011) 687-697.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    3. [3]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    11. [11]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    12. [12]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    13. [13]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    14. [14]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    15. [15]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    19. [19]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    20. [20]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

Metrics
  • PDF Downloads(0)
  • Abstract views(697)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return