Citation: Mohsen Ameri, Alireza Asghari, Ali Amoozadeh, Hassan Daneshinejad, Davood Nematollahi. Electrosynthesis of hydroquinonethioethers using electrochemical oxidation of hydroquinone in the presence of thiouracil derivatives[J]. Chinese Chemical Letters, ;2014, 25(05): 797-801. doi: 10.1016/j.cclet.2014.03.016
-
Electrochemical oxidation of hydroquinone (1a) has been studied in the presence of 6-methyl-2- thiouracil (3a) and 6-propyl-2-thiouracil (3b) as nucleophiles in a DMF/buffer mixture, using cyclic voltammetry and controlled-potential coulometry. The results indicated that the p-quinone (2a) derived from 1a participates in a 1,4-Michael addition reaction with the thiouracil derivatives (3a-b) to form the corresponding hydroquinonethioether derivatives (6a-6b). The electrosynthesis of these compounds (6a-b) has been successfully performed on carbon rod electrodes in an undivided cell in good yield and purity.
-
-
[1]
[1] M.A. Ghanem, Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode, Electrochem. Commun. 9 (2007) 2501-2506.
-
[2]
[2] N.Q. Ran, D.R. Knop, K.M. Draths, J.W. Frost, Benzene-free synthesis of hydroquinone, J. Am. Chem. Soc. 123 (2001) 10927-10934.
-
[3]
[3] S.J. Li, Y. Xing, G.F.Wang,A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone, Microchim. Acta 176 (2012) 163-168.
-
[4]
[4] S.S.H. Davarani, A.R. Fakhari, A. Shaabani, et al., A facile electrochemical method for the synthesis of phenazine derivatives via an ECECC pathway, Tetrahedron Lett. 49 (2008) 5622-5624.
-
[5]
[5] D. Nematollahi, B. Dadpou, Electrochemical pyridination of hydroquinone in aqueous solution, Monatsh. Chem. 142 (2011) 1235-1239.
-
[6]
[6] D. Nematollahi, A. Amani, E. Tammari, Electrosynthesis of symmetric and highly conjugated benzofuran via a unique ECECCC electrochemical mechanism: evidence for predominance of electrochemical oxidation versus intramolecular cyclization, J. Org. Chem. 72 (2007) 3646-3651.
-
[7]
[7] A.R. Fakhari, H. Ahmara, S.S.H. Davarania, et al., Electro-organic synthesis of 2- amino-3-cyano-benzofuran derivatives using hydroquinonesandmalononitrile, Synth. Commun. 41 (2011) 561-568.
-
[8]
[8] S.S.H. Davarania, D. Nematollahi, M. Shamsipur, et al., Electrochemical oxidation of 2,3-dimethybydroquinone in the presence of 1,3-dicarbonyl compounds, J. Org. Chem. 71 (2006) 2139-2142.
-
[9]
[9] S. Shahrokhian, A. Hamzehloei, Electrochemical oxidation of catechol in the presence of 2-thiouracil: application to electro-organic synthesis? Electrochem. Commun. 5 (2003) 706-710.
-
[10]
[10] D. Nematollahi, V. Hedayatfar, Diversity in electrochemical oxidation of dihydroxybenzenes in the presence of 1-methylindole, J. Chem. Sci. 123 (2011) 709- 717.
-
[11]
[11] M.D. Ryan, A. Yueh, W.Y. Chen, The electrochemical oxidation of substituted catechols, J. Electrochem. Soc. 127 (1980) 1489-1495.
-
[12]
[12] A.J. Bard, Electrochemical Methods, 2nd ed., Wiley, New York, 2001, pp. 103-497.
-
[13]
[13] S.S.H. Davarani, F.N. Sheijooni, N.H. Arvin, F. Moradi, Electrochemical synthesis of 6-amino-5-(3,4-dihydroxyphenyl) pyrimidine, Tetrahedron Lett. 49 (2008) 710- 714.
-
[14]
[14] S.S.H. Davarani, D. Nematollahi, M. Shamsipur, An efficient electrochemical method for synthesis of (1H-1,2,4-triazol-3-ylthio)benzen-1,2-diol derivatives, Heteroat. Chem. 18 (2007) 644-649.
-
[15]
[15] L. Fotouhi, S. Taghavi, D. Nematollahi, M.M. Heravi, Study of the oxidation of some catechols in the presence of 4-amino-3-thio-1,2,4-triazole by digital simulation of cyclic voltammograms, Int. J. Chem. Kinet. 39 (2007) 340-345.
-
[1]
-
-
[1]
Xubin Qian , Lei Xu , Xu Ge , Zhun Liu , Cheng Fang , Jianbing Wang , Junfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218
-
[2]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[3]
Zhiwei Chen , Heyun Sheng , Xue Li , Menghan Chen , Xin Li , Qiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937
-
[4]
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
-
[5]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[6]
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
-
[7]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[8]
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
-
[9]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[10]
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
-
[11]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[12]
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
-
[13]
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
-
[14]
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
-
[15]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[16]
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
-
[17]
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
-
[18]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[19]
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
-
[20]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(672)
- HTML views(66)