Citation: Fereshteh Karimian, Gholam Hossein Rounaghi, Mohammad Hossein Arbab-Zavar. Construction of a PVC based 15-crown-5 electrochemical sensor for Ag(I) cation[J]. Chinese Chemical Letters, ;2014, 25(05): 809-814. doi: 10.1016/j.cclet.2014.03.014 shu

Construction of a PVC based 15-crown-5 electrochemical sensor for Ag(I) cation

  • Corresponding author: Gholam Hossein Rounaghi, 
  • Received Date: 29 July 2013
    Available Online: 10 January 2014

  • The macrocyclic ligand, 15-crown-5, was used as an ionophore for fabrication of a polyvinyl chloride (PVC) based membrane sensor for Ag(I) cation. For construction of the Ag(I) cation selective electrode, the best response characteristics were obtained using the composition: 15-crown-5/PVC/o-nitrophenyloctylether (NPOE)/sodium tetraphenyl borate (NaTPB) in the percentage ratio of 5.6/30/60.5/3.9 (w/w/w/w). The electrochemical sensor shows a linear dynamic range 1.0×10-7-1.0×10-1 mol/L and a Nernstian slope of 58.9±0.5 mV/decade with a detection limit of 8.09×10-8 mol/L for Ag(I) cation. It has a fast response time of <10 s and can be used for at least 8 weeks without any considerable divergences in its potential response. It was successfully used as an indicator electrode in potentiometric titration of Ag(I) cation with I- and Cl- anions and also for the determination of this metal cation in radiology waste water.
  • 加载中
    1. [1]

      [1] C.D. Klaassen, Casarett & Doull's Toxicology: Basic Science of Poisons, McGraw- Hill, New York, 1996.

    2. [2]

      [2] R. De Marco, Response of copper (Ⅱ) ion-selective electrodes in sea water, Anal. Chem. 66 (1994) 3202-3207.

    3. [3]

      [3] I.M. Kolthoff, P.J. Elving, Treatise on Analytical Chemistry. Part II, vol. 4, Interscience, New York, 1966.

    4. [4]

      [4] H. Rener, 4th ed., Ulmanns Encyclopadie der Tehnischen Chemie, vol. 21, VerlagChemie, Weinheim, 1982.

    5. [5]

      [5] S.R. Oager, Metallic Raw Materials Dictionary, Bank Tobel, Zürich, 1984.

    6. [6]

      [6] A.T. Wan, R.A.J. Conyers, C.J. Coombs, J.P. Masterton, Determination of silver in blood, urine, and tissues of volunteers and burn patients, Clin. Chem. 37 (1991) 1683-1687.

    7. [7]

      [7] Ł. Tymecki, E. Zwierkowska, S. Głab, R. Koncki, Strip thick-film silver ion-selective electrodes, Sens. Actuators B 96 (2003) 482-488.

    8. [8]

      [8] M.T. Lai, J.S. Shih, Mercury (Ⅱ) and silver (I) ion-selective electrodes based on dithia crown ethers, Analyst 111 (1986) 891-895.

    9. [9]

      [9] S. Yajima, N. Yoshioka, M. Tanaka, K. Kimura, Soft metal ion-selective electrodes based on p-coordinate calixarene derivatives, Electroanalysis 15 (2003) 1319- 1326.

    10. [10]

      [10] Z. Szigeti, A. Malon, T. Vigassy, et al., Novel potentiometric and optical silver ionselective sensors with subnanomolar detection limits, Anal. Chim. Acta 572 (2006) 1-10.

    11. [11]

      [11] K. Kimura, T. Shono, Y. Inoue, G.W. Gokel, Cation Binding by Macrocycles, Marcel Dekker, New York, 1990.

    12. [12]

      [12] H. Hirata, K. Higashiyama, Ion selective chalcogenide electrodes for a number of cations, Talanta 19 (1972) 391-398.

    13. [13]

      [13] S.S. Park, S.O. Jung, S.M. Kim, J.S. Kim, Lipophilic pyrrole-based tetra aza crown ether as neutral carrier for silver ion-selective electrode, Bull. Korean Chem. Soc. 17 (1996) 405-407.

    14. [14]

      [14] J. Casabó, L. Mestres, L. Escriche, F. Teixidor, C. Pérez-Jiménez, Silver(I) ionselective electrodes based on polythiamacrocycles, J. Chem. Soc. Dalton Trans. (1991) 1969-1971.

    15. [15]

      [15] X.B. Zhang, Z.X. Hana, Z.H. Fang, G.L. Shen, R.Q. Yu, 5,10,15-Tris (pentafluorophenyl) corrole as highly selective neutral carrier for a silver ion-sensitive electrode, Anal. Chim. Acta 562 (2006) 210-215.

    16. [16]

      [16] M.J. Goldcamp, K. Ashley, S.E. Edison, J. Pretty, J. Shumaker, A bis-oxime derivative of diaza-18-crown-6 as an ionophore for silver ion, Electroanalysis 17 (2005) 1015-1018.

    17. [17]

      [17] F. Karimian, G.H. Rounaghi, M.H. Arbab-Zavar, Highly efficient and selective membrane transport of silver(I) using 15-crown-5 as a selective ion carrier, Russ. J. Appl. Chem. 86 (2013) 1670-1675.

    18. [18]

      [18] E. Bakker, P. Bühlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 97 (1997) 3083-3132.

    19. [19]

      [19] S. Amarchand, S.K.Menon, Y.K. Agarwal, Rare-earth hydroxamate complexes as sensor materials for ion-selective electrodes, Electroanalysis 12 (2000) 522-526.

    20. [20]

      [20] M.R. Ganjali, A. Daftari, M. Rezapour, T. Poursaberi, S. Haghgoo, Gliclazide as novel carrier in construction of PVC-based La(Ⅲ)-selective membrane sensor, Talanta 59 (2003) 613-619.

    21. [21]

      [21] X.H. Yang, N. Kumar, H. Chi, D.D. Hibbert, P.N.W. Alxeander, Lead-selective membrane electrodes based on dithiophenediazacrown ether derivatives, Electroanalysis 9 (1997) 549-553.

    22. [22]

      [22] R. Eugster, T. Rrosatzin, B. Rusterholz, et al., Plasticizers for liquid polymeric membranes of ion-selective chemical sensors, Anal. Chim. Acta 289 (1994) 1-13.

    23. [23]

      [23] M. Delosa, A. Perez, L.P.Martin, J.C. Quintana,M. Yazdani-Pedram, Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination, Sens. Actuators B 89 (2003) 262- 268.

    24. [24]

      [24] W.E. Morf, D. Ammann, W. Simon, Elimination of the anion interference in neutral carrier cation-selective membrane electrodes, Chimia 28 (1974) 65-67.

    25. [25]

      [25] D. Ammann, Ion-Selective Microelectrodes, Springer-Verlag, Berlin, 1986.

    26. [26]

      [26] P.M. Gehring, W.E. Morf, M. Welti, E. Pretsch, W. Simon, Catalysis of ion transfer by tetraphenylborates in neutral carrier-based ion-selective electrodes, Helv. Chim. Acta 73 (1990) 203-212.

    27. [27]

      [27] G.G. Guilbault, R.A. Durst, M.S. Frant, et al., Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem. 48 (1976) 127-132.

    28. [28]

      [28] K. Srinivasan, G.A. Rechnitz, Selectivity studies on liquid membrane, ion-selective electrodes, Anal. Chem. 41 (1969) 1203-1208.

    29. [29]

      [29] Y. Umezava, K. Umezawa, H. Sato, Selectivity coefficients for ion selective electrodes: recommended methods for reporting KA,B Pot values (IUPAC AC technical report), Pure Appl. Chem. 67 (1995) 507-518.

    30. [30]

      [30] E. Bakker, Selectivity of liquid membrane ion-selective electrodes, Electroanalysis 9 (1997) 7-12.

    31. [31]

      [31] R.K. Mahajan, I. Kaur, M. Kumar, Silver ion-selective electrodes employing Schiff base p-tert-butyl calix [4] arene derivatives as neutral carriers, Sens. Actuators B 91 (2003) 26-31.

    32. [32]

      [32] M.H. Mashhadizadeh, M. Shamsipur, Silver(I)-selective membrane electrode based on hexathia-18-crown-6, Anal. Chim. Acta 381 (1999) 111-116.

    33. [33]

      [33] R.K. Mahajan, O. Parkash, Silver(I) ion selective PVC membrane based on bispyridine tetramide macrocycle, Talanta 52 (2000) 691-693.

    34. [34]

      [34] S.M. Lim, H.J. Chung, K.J. Paeng, et al., Calix[2]furano[2]pyrrole and related compounds as the neutral carrier in silver ion-selective electrode, Anal. Chim. Acta 453 (2002) 81-88.

    35. [35]

      [35] A. Demirel, A. Doğan, G. Akkuş, M. Yılmaz, E. Kılıç, Silver(I)-selective PVC membrane potentiometric sensor based on a recently synthesized calix[4]arene, Electroanalysis 18 (2006) 1019-1027.

  • 加载中
    1. [1]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    6. [6]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    7. [7]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    8. [8]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    9. [9]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    10. [10]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    11. [11]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    12. [12]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    15. [15]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    18. [18]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    19. [19]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(696)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return