Citation: Gao-Hong Zhai, Pei Yang, Shao-Mei Wu, Yi-Bo Lei, Yu-Sheng Dou. A semiclassical molecular dynamics of the photochromic ring-opening reaction of spiropyran[J]. Chinese Chemical Letters, ;2014, 25(05): 727-731. doi: 10.1016/j.cclet.2014.01.050 shu

A semiclassical molecular dynamics of the photochromic ring-opening reaction of spiropyran

  • Corresponding author: Gao-Hong Zhai,  Yi-Bo Lei, 
  • Received Date: 20 December 2013
    Available Online: 21 January 2014

    Fund Project: Special Fund of Education Department of Shaanxi Province (No. 12JK0619). (No. 2011JQ2013)

  • The photochromic ring-opening reaction of spiropyran (SP) has been investigated by a realistic semiclassical dynamics simulation, accompanied by SA3-CASSCF(12,10)/MS-CASPT2 potential energy curves (PECs) of S0-S2. The main simulation results show the dominate pathway corresponds to the ringopening process of trans-SP to form the most stable merocyanine (MC) product. These findings provide more important complementarity for interpreting experimental observations.
  • 加载中
    1. [1]

      [1] B.L. Feringa, Molecular Switches, Wiley-VCH, Weinheim, Germany, 2011, p. 476.

    2. [2]

      [2] M. Heilemann, P. Dedecker, J. Hofkens, M. Sauer, Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification, Laser Photonics Rev. 3 (2009) 180-202.

    3. [3]

      [3] J. Buback, M. Kullmann, F. Langhojer, et al., Ultrafast bidirectional photoswitching of a spiropyran, J. Am. Chem. Soc. 132 (2010) 16510-16519.

    4. [4]

      [4] G. Berkovic, V. Krongauz, V. Weiss, Spiropyrans and spirooxazines for memories and switches, Chem. Rev. 100 (2000) 1741-1754.

    5. [5]

      [5] S. Silvi, A. Arduini, A. Pochini, et al., A simple molecular machine operated by photoinduced proton transfer, J. Am. Chem. Soc. 129 (2007) 13378-13379.

    6. [6]

      [6] (a) D.S. Achilleos, T.A. Hatton, M. Vamvakaki, Light-regulated supramolecular engineering of polymeric nanocapsules, J. Am. Chem. Soc. 134 (2012) 5726-5729; (b) Z. Si, Q. Zhang, M. Xue, et al., Synthesis of novel chalcone derivatives and their stabilization effect of spiropyran in PMMA films, Chin. Chem. Lett. 22 (2011) 1025-1028.

    7. [7]

      [7] N.P. Ernsting, T. Arthen-Engeland, Conformational dynamics of the merocyanine, J. Phys. Chem. 95 (1991) 5502-5509.

    8. [8]

      [8] N. Tamai, H. Miyasaka, Ultrafast dynamics of photochromic systems, Chem. Rev. 100 (2000) 1875-1890.

    9. [9]

      [9] M. Rini, A.K. Holm, E.T.J. Nibbering, H. Fidder, Ultrafast UV-mid-IR investigation of the ring opening reaction of a photochromic spiropyran, J. Am. Chem. Soc. 125 (2003) 3028-3034.

    10. [10]

      [10] L. Poisson, K.D. Raffael, B. Soep, J.M. Mestdagh, G. Buntinx, Gas-phase dynamics of spiropyran and spirooxazine molecules, J. Am. Chem. Soc. 128 (2006) 3169-3178.

    11. [11]

      [11] M. Kullmann, S. Ruetzel, J. Buback, P. Nuernberger, T. Brixner, Reaction dynamics of a molecular switch unveiled by coherent two-dimensional electronic spectroscopy, J. Am. Chem. Soc. 133 (2011) 13074-13080.

    12. [12]

      [12] J. Kohl-Landgraf, M. Braun, C.Özçoban, D.P.N. Gonçalves, A. Heckel, J. Wachtveitl, Ultrafast dynamics of a spiropyran in water, J. Am. Chem. Soc. 134 (2012) 14070- 14077.

    13. [13]

      [13] Y. Sheng, J. Leszczynski, A.A. Garcia, et al., Comprehensive theoretical study of the conversion reactions of spiropyrans: substituent and solvent effects, J. Phys. Chem. B 108 (2004) 16233-16243.

    14. [14]

      [14] K.P. Lawley, Advances in Chemical Physics, vol. 69, John Wiley & Sons Inc., New York, 1987, pp. 399-445.

    15. [15]

      [15] J. Finley, P.A. Malmqvist, O. Roos, L. Serrano-andres, The multi-state CASPT2 method, Chem. Phys. Lett. 288 (1998) 299-306.

    16. [16]

      [16] (a) Y. Kurashige, T. Yanai, High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds, J. Chem. Phys. 130 (2009) 234114; (b) D. Ghosh, J. Hachmann, T. Yanai, G.K.L. Chan, Orbital optimization in the density matrix renormalization group, with applications to polyenes and betacarotene, J. Chem. Phys. 128 (2008) 144117; (c) Y. Kurashige, T. Yanai, Second-order perturbation theory with a DMRG selfconsistent field reference function: theory and application to the study of chromium dimer, J. Chem. Phys. 135 (2011) 094104.

    17. [17]

      [17] (a) P. Celani, F. Bernardi, M. Olivucci, M.A. Robb, Conical intersection mechanism for photochemical ring opening in benzospiropyran compounds, J. Am. Chem. Soc. 119 (1997) 10815-10820; (b) I. Gómez, M. Reguero, M.A. Robb, Efficient photochemical merocyanine-tospiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study, J. Phys. Chem. A 110 (2006) 3986- 3991.

    18. [18]

      [18] M. Sanchez-Lozano, C.M. Estévez, J. Hermida-Ramón, L. Serrano-Andres, Ultrafast ring-opening/closing and deactivation channels for a model spiropyran-merocyanine system, J. Phys. Chem. A 115 (2011) 9128-9138.

    19. [19]

      [19] (a) F.Y. Liu, K. Morokuma, Multiple pathways for the primary step of the spiropyran photochromic reaction: a CASPT2//CASSCF study, J. Am. Chem. Soc. 135 (2013) 10693-10702; (b) F.Y. Liu, Y. Kurashige, T. Yanai, K. Morokuma, Multireference Ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran, J. Chem. Theory Comput. 9 (2013) 4462-4469.

    20. [20]

      [20] V.I. Minkin, A.V. Metelitsa, I.V. Dorogan, et al., Spectroscopic and theoretical evidence for the elusive intermediate of the photoinitiated and thermal rearrangements of photochromic spiropyrans, J. Phys. Chem. A 109 (2005) 9605-9616.

    21. [21]

      [21] (a) T. Chu, Y. Zhang, K. Han, The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions, Int. Rev. Phys. Chem. 25 (2006) 201-235; (b) K. Han, J.D. Huang, S. Chai, S.H. Wen, W.Q. Deng, Anisotropic mobilities in organic semiconductors, Nat. Protoc. Exch. (2013), http://dx.doi.org/10.1038/ protex.2013.070.

    22. [22]

      [22] Y.S. Dou, B.R. Torralva, R.E. Allen, Semiclassical electron-radiation-ion dynamics (SERID) and cis-trans photoisomerization of butadiene, J. Mod. Opt. 50 (2003) 2615-2643.

    23. [23]

      [23] Y.S. Dou, B.R. Torralva, R.E. Allen, Another important coordinate in the photoisomerization of cis-stilbene, Chem. Phys. Lett. 378 (2003) 323-329.

    24. [24]

      [24] T.B. Boykin, R.C. Bowen, G. Klimeck, Electromagnetic coupling and gauge invariance in the empirical tight-binding method, Phys. Rev. B 63 (2001) 245314- 245330.

    25. [25]

      [25] B.R. Torralva, T.A. Niehaus, M. Elstner, et al., Response of C60 and Cn to ultrashort laser pulses, Phys. Rev. B 64 (2001) 153105-153108.

    26. [26]

      [26] D. Porezag, T. Frauenheim, T. Köhler, D. Seifert, R. Kaschner, Construction of tightbinding- like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B 51 (1995) 12947-12957.

    27. [27]

      [27] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: applications to small water clusters, J. Chem. Phys. 76 (1982) 637-649.

    28. [28]

      [28] G. Karlström, R. Lindh, P.Å. Malmqvist, et al., MOLCAS: a program package for computational chemistry, Comput. Matl. Sci. 28 (2003) 222-239.

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    3. [3]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    4. [4]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    5. [5]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    6. [6]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    7. [7]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    8. [8]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    11. [11]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    12. [12]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    13. [13]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    14. [14]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    18. [18]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    19. [19]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    20. [20]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return