Citation: Fei Tang, Yi Chen, Jiu-Ming He, Zhi-Gang Luo, Zeper Abliz, Xiao-Hao Wang. Design and performance of air flow-assisted ionization imaging mass spectrometry system[J]. Chinese Chemical Letters, ;2014, 25(05): 687-692. doi: 10.1016/j.cclet.2014.01.046 shu

Design and performance of air flow-assisted ionization imaging mass spectrometry system

  • Corresponding author: Xiao-Hao Wang, 
  • Received Date: 3 December 2013
    Available Online: 16 January 2014

    Fund Project: This work is financially supported by the National Instrumentation Program (No. 2011YQ17006702) (No. 2011YQ17006702)

  • The imaging mass spectrometry (IMS) technology has experienced a rapid development in recent years. A new IMS technology which is based on air flowassisted ionization (AFAI) was reported. It allows for the convenient pretreatment of the samples and can image a large area of sample in a single measurement with high sensitivity. The AFAI in DESI mode was used as the ion source in this paper. The new IMS method is named AFADESI-IMS. The adoption of assisted air flow makes the sample pretreatment easy and convenient. An optimization of the distance between the ion transport tube and MS orifice increases the sensitivity of the system. For data processing, a program based on MATLAB with the function of numerical analysis was developed. A theoretical imaging resolution of a few hundred microns can be achieved. The composite AFAI-IMS images of different target analytes were imaged with high sensitivity. A typical AFAI-IMS image of the whole-body section of a rat was obtained in a single analytical measurement. The ability to image a large area for relevant samples in a single measurement with high sensitivity and repeatability is a significant advantage. The method has enormous potentials in the MS imaging of large and complicated samples.
  • 加载中
    1. [1]

      [1] L.A. McDonnell, R.M.A. Heeren, Imaging mass spectrometry, Mass Spectrom. Rev. 26 (2007) 606-643.

    2. [2]

      [2] S. Shimma, M. Setou, Review of imaging mass spectrometry, J. Mass Spectrom. Soc. Jpn. 53 (2005) 230-238.

    3. [3]

      [3] D.S. Cornett, M.L. Reyzer, P. Chaurand, R.M. Caprioli, MALDI imaging mass spectrometry: molecular snapshots of biochemical systems, Nat. Methods 4 (2007) 828-833.

    4. [4]

      [4] J.M. Wiseman, D.R. Ifa, A. Venter, R.G. Cooks, Ambient molecular imaging by desorption electrospray ionization mass spectrometry, Nat. Protoc. 3 (2008) 517- 524.

    5. [5]

      [5] R. van de Plas, B. De Moor, E. Waelkens, Imaging mass spectrometry based exploration of biochemical tissue composition using peak intensity weighted PCA, in: 2007 IEEE/NIH Life Science Systems and Applications Workshop, IEEE, Bethesda, MD, (2007), pp. 209-212.

    6. [6]

      [6] S.L. Luxembourg, R.M.A. Heeren, Fragmentation at and above surfaces in SIMS: effects of biomolecular yield enhancing surface modifications, Int. J. Mass Spectrom. 253 (2006) 181-192.

    7. [7]

      [7] A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends, John Wiley and Sons Publishers, New York, 1987.

    8. [8]

      [8] S.A. Schwartz, M.L. Reyzer, R.M. Caprioli, Direct tissue analysis using matrixassisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation, J. Mass Spectrom. 38 (2003) 699-708.

    9. [9]

      [9] R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 23 (1997) 4751-4760.

    10. [10]

      [10] Z. Takáts, J.M. Wiseman, B. Gologan, R.G. Cooks, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, Science 306 (2004) 471-473.

    11. [11]

      [11] R.I. Demian, M.W. Justin, Q. Song, R.G. Cooks, Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI), Int. J. Mass Spectrom. 259 (2007) 8-15.

    12. [12]

      [12] G.A. Harris, L. Nyadong, F.M. Fernandez, Recent developments in ambient ionization techniques for analytical mass spectrometry, Analyst 133 (2008) 1297-1301.

    13. [13]

      [13] D.R. Ifa, L.M. Gumaelius, L.S. Eberlin, N.E. Manicke, R.G. Cooks, Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry, Analyst 132 (2007) 461-467.

    14. [14]

      [14] K. Yanagisawa, Y. Shyr, B.J. Xu, et al., Proteomic patterns of tumour subsets in nonsmall- cell lung cancer, The Lancet 362 (2003) 433-439.

    15. [15]

      [15] M.L. Reyzer, P. Chaurand, P.M. Angel, R.M. Caprioli, Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry, Methods Mol. Biol. 656 (2010) 285-301.

    16. [16]

      [16] P. Chaurand, M. Stoeckli, R.M. Caprioli, Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry, Anal. Chem. 71 (1999) 5263-5270.

    17. [17]

      [17] P. Chaurand, S.A. Schwartz, D. Billheimer, et al., Integrating histology and imaging mass spectrometry, Anal. Chem. 76 (2004) 1145-1155.

    18. [18]

      [18] H.R. Aerni, D.S. Cornett, R.M. Caprioli, Automated acoustic matrix deposition for MALDI sample preparation, Anal. Chem. 78 (2006) 827-834.

    19. [19]

      [19] J.M. He, F. Tang, Z.G. Luo, et al., Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application, Rapid Commun. Mass Spectrom. 25 (2011) 843-850.

    20. [20]

      [20] E.H. Seeley, S.R. Oppenheimer, D. Mi, P. Chaurand, R.M. Caprioli, Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections, J. Am. Soc. Mass Spectrom. 19 (2008) 1069-1077.

    21. [21]

      [21] J.M. Wiseman, D.R. Ifa, Y. Zhu, et al., Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 18120-18125.

    22. [22]

      [22] C.S. Wu, Z.X. Jia, B.M. Ning, J.L. Zhang, S. Wu, Separation and identification of moxifloxacin impurities in drug substance by high-performance liquid chromatography coupled with ultraviolet detection and Fourier transform ion cyclotron resonance mass spectrometry, Chin. Chem. Lett. 23 (2012) 1185-1188.

    23. [23]

      [23] Z.G. Luo, J.M. He, Y.J. Chen, et al., Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions, Anal. Chem. 85 (2013) 2977-2982.

    24. [24]

      [24] V. Kertesz, G.J. van Berkel, Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform, J. Mass Spectrom. 45 (2010) 252-260.

    25. [25]

      [25] S. Jiang, Y.S. Li, B. Sun, Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method, Chin. Chem. Lett. 24 (2013) 311-314.

    26. [26]

      [26] T. Schramm, A. Hester, I. Klinkert, et al., imzML—A common data format for the flexible exchange and processing of mass spectrometry imaging data, J. Proteomics 75 (2012) 5106-5110.

    27. [27]

      [27] R. van de Plas, K. Pelckmans, B.D. Moor, E. Waelkens, Spatial querying of imaging mass spectrometry data: a nonnegative least squares approach, in: Benelux Bioinformatics Conference, 2007.

    28. [28]

      [28] S.K. Shahidi, M. Andersson, J.L. Herman, T.A. Gillespie, R.M. Caprioli, Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry, Anal. Chem. 78 (2006) 6448-6456.

  • 加载中
    1. [1]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    2. [2]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    3. [3]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    4. [4]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    5. [5]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    8. [8]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    9. [9]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    10. [10]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    11. [11]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    12. [12]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    15. [15]

      Zhihui ZhangRu SunChong BianHongbo WangZhen ZhaoPanpan LvJianzhong LuHaixin ZhangHulie ZengYuanyuan ChenZhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784

    16. [16]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    17. [17]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    18. [18]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    19. [19]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    20. [20]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

Metrics
  • PDF Downloads(0)
  • Abstract views(627)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return