Citation:
Fu-Rong Tao, Chen Zhuang, Yue-Zhi Cui, Jing Xu. Dehydration of glucose into 5-hydroxymethylfurfural in SO3H-functionalized ionic liquids[J]. Chinese Chemical Letters,
;2014, 25(05): 757-761.
doi:
10.1016/j.cclet.2014.01.044
-
The continuous dehydration of D-glucose into 5-hydroxymethylfurfural (HMF) was carried out under mild conditions, using SO3H-functionalized acidic ionic liquids as catalysts and H2O-4-methyl-2- pentanone (MIBK) biphasic system as solvent. High glucose conversion of 97.4% with HMF yield of 75.1% was obtained at 120 ℃ for 360 min, also, small amounts of levulinic acid (LA) and formic acid were generated. Generally, the dosage of catalyst and the initial content of glucose influenced the reaction significantly; the HMF selectivity decreased with the excessive elevation of temperature and prolonging of time; and water content in the system had a negative effect on the reaction. The ionic liquid catalyst could be recycled and exhibited constant activity for five successful runs. This paper provided a new strategy for HMF production from glucose.
-
Keywords:
- Glucose,
- Dehydration,
- HMF,
- Acidic ionic liquids
-
-
-
[1]
[1] G. Yong, Y.G. Zhang, J.Y. Ying, Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose, Angew. Chem. Int. Ed. 47 (2008) 9345-9348.
-
[2]
[2] F. Benvenuti, C. Carlini, P. Patrono, et al., Heterogeneous zirconium and titanium catalysts for the selective synthesis of 5-hydroxymethyl-2-furaldehyde from carbohydrates, Appl. Catal. A: Gen. 193 (2000) 147-153.
-
[3]
[3] A.A. Rosatella, S.P. Simeonov, C.A.M. Afonso, et al., Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural, Green Chem. 13 (2011) 754-793.
-
[4]
[4] F.M.A. Geilen, J. Klankermayer, W. Leitner, et al., Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system, Angew. Chem. Int. Ed. 49 (2010) 5510-5514.
-
[5]
[5] K.I. Shimizu, R. Uozumi, A. Satsuma, Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods, Catal. Commun. 10 (2009) 1849-1853.
-
[6]
[6] J.Y.G. Chan, Y.G. Zhang, Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural, Chemsuschem 2 (2009) 731-734.
-
[7]
[7] H.P. Yan, Y. Yang, D.M. Tong, et al., Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4-2/ZrO2 and SO4-2/ZrO2-Al2O3 solid acid catalysts, Catal. Commun. 10 (2009) 1558-1563.
-
[8]
[8] Y.M. Zhang, V. Degirmenci, C. Li, E.J.M. Hensen, Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5- hydroxymethylfurfural, Chemsuschem 4 (2011) 59-64.
-
[9]
[9] Z.H. Zhang, Z.K. Zhao, Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride, Bioresour. Technol. 102 (2011) 3970-3972.
-
[10]
[10] R.L. Huang, W. Qi, R.X. Su, et al., Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural, Chem. Commun. 46 (2010) 1115- 1117.
-
[11]
[11] M. Bicker, J. Hirth, H. Vogel, Dehydration of fructose to 5-hydroxymethylfurfural in sub and supercritical acetone, Green Chem. 5 (2003) 280-284.
-
[12]
[12] M. Watanable, Y. Aizawa, T. Iida, et al., Glucose reactions with acid and base catalysts in hot compressed water at 473 K, Carbohydr. Res. 340 (2005) 1925- 1930.
-
[13]
[13] Y. Nakamura, S. Morikawa, The dehydration of D-fructose to 5-hydroxymethyl-2- furaldehyde, Bull. Chem. Soc. Jpn. 53 (1980) 3705-3706.
-
[14]
[14] K.I. Seri, Y. Inoue, H. Ishida, Highly efficient catalytic activity of lanthanide(Ⅲ) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents, Chem. Lett. 29 (2000) 22-23.
-
[15]
[15] K. Seri, Y. Inoue, H. Ishida, Catalytic activity of lanthanide(Ⅲ) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water, Bull. Chem. Soc. Jpn. 74 (2001) 1145-1150.
-
[16]
[16] F.S. Asghari, H. Yoshida, Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water, Ind. Eng. Chem. Res. 45 (2006) 2163-2173.
-
[17]
[17] R.P. Swatloski, S.K. Spear, Y. Aizawa, R.D. Rogers, A novel cellulose hydrogel prepared from its ionic liquid solution, J. Am. Chem. Soc. 124 (2002) 4974-4975.
-
[18]
[18] X. Tong, Y. Ma, Y. Li, An efficient catalytic dehydration of fructose and sucrose to 5- hydroxymethylfurfural with protic ionic liquids, Cabohydr. Res. 345 (2010) 1698- 1701.
-
[19]
[19] H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316 (2007) 1597- 1599.
-
[20]
[20] M. Lu, X.H. Guan, X.H. Xu, D.Z. Wei, Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions, Chin. Chem. Lett. 24 (2013) 253-256.
-
[21]
[21] Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Phase modifiers promote efficient production of hydroxymethylfurfural from fructose, Science 312 (2006) 1933- 1937.
-
[22]
[22] F. Tao, H. Song, L. Chou, Efficient process for the conversion of xylose to furfural with acidic ionic liquid, Can. J. Chem. 89 (2011) 83-87.
-
[23]
[23] K. Niknam, M. Damya, 1-Butyl-3-methylimidazolium hydrogen sulfate[bmim]HSO4: an efficient reusable acidic ionic liquid for the synthesis of 1,8- dioxo-octahydroxanthenes, J. Chin. Chem. Soc. 56 (2009) 659-665.
-
[24]
[24] A.C. Cole, J.L. Jensen, L. Ntai, et al., Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soc. 124 (2002) 5962-5963.
-
[25]
[25] Q. Zhao, L. Wang, S. Zhao, et al., High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst, Fuel 90 (2011) 2289- 2293.
-
[26]
[26] B.F.M. Kuster, 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture, Starch 42 (1990) 314-321.
-
[27]
[27] X.H. Qi, M. Watanabe, R.L. Smith, et al., Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids, Green Chem. 11 (2009) 1327- 1331.
-
[28]
[28] S.Q. Hu, Z.F. Zhang, Y.X. Zhou, et al., Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials, Green Chem. 10 (2008) 1280-1283.
-
[29]
[29] X.H. Qi, M. Watanabe, T.M. Aida, et al., Efficient conversion of glucose into 5- hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chem. 11 (2009) 1327-1331.
-
[1]
-
-
-
[1]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[2]
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
-
[3]
Zhi-Yuan Yue , Hua-Kai Li , Na Wang , Shan-Shan Liu , Le-Ping Miao , Heng-Yun Ye , Chao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355
-
[4]
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
-
[5]
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
-
[6]
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
-
[7]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[8]
Qiangwei Wang , Huijiao Liu , Mengjie Wang , Haojie Zhang , Jianda Xie , Xuanwei Hu , Shiming Zhou , Weitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743
-
[9]
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191
-
[10]
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
-
[11]
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249
-
[12]
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
-
[13]
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
-
[14]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[15]
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
-
[16]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[17]
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
-
[18]
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
-
[19]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[20]
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(681)
- HTML views(17)