Citation: Hua-Rong Li, Yuan-Jie Shu, Chi Song, Ling Chen, Rui-Juan Xu, Xue-Hai Ju. The smart precursors of energetic-energetic cocrystals from eutectic precursors[J]. Chinese Chemical Letters, ;2014, 25(05): 783-786. doi: 10.1016/j.cclet.2014.01.038 shu

The smart precursors of energetic-energetic cocrystals from eutectic precursors

  • Corresponding author: Yuan-Jie Shu, 
  • Received Date: 1 November 2013
    Available Online: 16 January 2014

    Fund Project: The authors are grateful for financial support from National Natural Science Foundation of China - CAEP project (No. 11076002) (No. 11076002)

  • The selected 18 energetic compounds were theoretically investigated by using the density functional theory (DFT) quantum mechanical code, DMol3, and the Hansen solubility parameters (HSPs) analyses. The results showed that 4-nitrotoluene, 4-nitrophenol, N,N'-dimethyl-N,N'-diphenylurea and N,N'- diethyl-N,N'-diphenylurea contain relatively electron-rich aromatic rings. Four satisfactory energetic precursors with electron-rich rings were quickly and effectively found by electrostatic potential (ESP) surfaces and HSPs analyses. The results also indicated that the absolute value of the lowest unoccupied molecular orbital (LUMO) of the energetic precursors with electron-rich rings often was less than 3.00 eV, and the absolute value of LUMO of the energetic precursors with electron deficient rings was oftenmore than 3.00 eV. Additionally, we found that with at least two eutectic points was a prerequisite for two precursors to form a cocrystal.
  • 加载中
    1. [1]

      [1] F. Lara-Ochoa, G. Espinosa-Pérez, Cocrystals definitions, Supramol. Chem. 19 (2007) 553-557.

    2. [2]

      [2] N. Shan, M.J. Zaworotko, The role of cocrystals in pharmaceutical science, Drug Disc. Today 13 (2008) 440-446.

    3. [3]

      [3] A.D. Bond, What is a co-crystal? CrystEngComm 9 (2007) 833-834.

    4. [4]

      [4] P. Vishweshwar, J.A. Mcmahon, J.A. Bis, M.J. Zaworotko, Pharmaceutical cocrystals, J. Pharm. Sci. 95 (2006) 499-516.

    5. [5]

      [5] L.E. Fried, M.R. Manaa, P.F. Pagoria, R.L. Simpson, Design and synthesis of energetic materials, Annu. Rev. Mater. Res. 31 (2001) 291-321.

    6. [6]

      [6] J.P. Agrawal, R.D. Hodgson, Organic Chemistry of Explosives, Wiley, New York, 2007.

    7. [7]

      [7] Z.W. Yang, H.Z. Li, X.Q. Zhou, et al., Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF, Cryst. Growth Des. 12 (2012) 5155-5158.

    8. [8]

      [8] H.B. Zhang, C.Y. Guo, X.C. Wang, et al., Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions, Cryst. Growth Des. 13 (2013) 679-687.

    9. [9]

      [9] K.B. Landenberger, A.J. Matzger, Cocrystal engineering of a prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene, Cryst. Growth Des. 10 (2010) 5341-5347.

    10. [10]

      [10] K.B. Landenberger, O. Bolton, A.J. Matzger, Two isostructural explosive cocrystals with significantly different thermodynamic stabilities, Angew. Chem. Int. Ed. 125 (2013) 6596-6599.

    11. [11]

      [11] Z.R. Liu, Y.H. Shao, C.M. Yin, Y.H. Kong, Measurement of the eutectic composition and temperature of energetic materials. Part 1. The phase diagram of binary systems, Thermochim. Acta 250 (1995) 65-76.

    12. [12]

      [12] C.M. Yin, Z.R. Liu, Y.H. Shao, Y.H. Kong, Measurement of the eutectic composition and temperature of energetic materials. Part 2. The HX-phase diagram of ternary systems, Thermochim. Acta 250 (1995) 77-83.

    13. [13]

      [13] Y.H. Kong, Z.R. Liu, Y.H. Shao, C.M. Yin, W. He, Measurement of the eutectic composition and temperature of energetic materials. Part 3. The TX-phase diagram of ternary system, Thermochim. Acta 297 (1997) 161-168.

    14. [14]

      [14] K. Chadwick, R. Davey, W. Cross, How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine, CrystEngComm 9 (2007) 732-734.

    15. [15]

      [15] E. Lu, H.N. Rodríguez, R. Suryanarayanan, A rapid thermal method for cocrystal screening, CrystEngComm 10 (2008) 665-668.

    16. [16]

      [16] C.M. Hansen, The three-dimensional solubility parameter-key to paint component affinities: solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. Ⅲ. Independent calculation of the parameter components, J. Paint Technol. 39 (1967) 505-510.

    17. [17]

      [17] R.E. Davis, K.A. Lorimer, M.A. Wilkowski, et al., Studies of phase relationships in cocrystal systems, ACA Trans. 39 (2004) 41-61.

    18. [18]

      [18] R.D. Chapman, J.W. Fronabarger, A convenient correlation for prediction of binary eutectics involving organic explosives, Propellants Explos. Pyrotech. 23 (1998) 50-55.

    19. [19]

      [19] D.J. Good, Ph.D., Pharmaceutical Cocrystal Eutectic Analysis: Study of Thermodynamic Stability, Solubility, and Phase Behavior, The University of Michigan, USA, 2010.

    20. [20]

      [20] M.A. Mohammad, A. Alhalaweh, S.P. Velaga, Hansen solubility parameter as a tool to predict cocrystal formation, Int. J. Pharm. 407 (2011) 63-71.

    21. [21]

      [21] Z.Y. Zheng, J.J. Zhao, Lattice energies and elastic properties of solid methane: assessment of different density functionals, Acta Phys. Chim. Sin. 28 (2012) 1809-1814.

    22. [22]

      [22] E. Stefanis, C. Panayiotou, A new expanded solubility parameter approach, Int. J. Pharm. 426 (2012) 29-43.

    23. [23]

      [23] H.R. Li, Y.J. Shu, S.J. Gao, et al., Easy methods to study the smart energetic TNT/CL- 20 co-crystal, J. Mol. Model. 19 (2013) 4909-4917.

  • 加载中
    1. [1]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    2. [2]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    3. [3]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    4. [4]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    7. [7]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    8. [8]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    9. [9]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    10. [10]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    11. [11]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    12. [12]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    13. [13]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    14. [14]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    15. [15]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    16. [16]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    17. [17]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    18. [18]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    19. [19]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    20. [20]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return