Citation: Chuan-Zhou Tao, Zhong-Tang Zhang, Jian-Wei Wu, Rong-Hua Li, Zhi-Ling Cao. Synthesis of unnatural N-glycosyl α-amino acids via Petasis reaction[J]. Chinese Chemical Letters, ;2014, 25(4): 532-534. doi: 10.1016/j.cclet.2014.01.035 shu

Synthesis of unnatural N-glycosyl α-amino acids via Petasis reaction

  • Corresponding author: Chuan-Zhou Tao, 
  • Received Date: 17 October 2013
    Available Online: 2 January 2014

    Fund Project: We are grateful to the Natural Science Foundation of Jiangsu Province (No. BK20130404) (No. BK20130404) and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. (No. CG1303)

  • A convenient and efficient protocol for the synthesis of unnatural N-glycosyl α-amino acids was developed. Condensation of 1,3,4,6-tetra-O-actyl-β-D-glucosamine hydrochloride, alkenyl boronic acid, and glyoxylic acid was achieved in CH2Cl2 to give the derivatives of 2-(N-glycosyl)aminobut-3-enoic acid which may find applications in glycobiology research and medicinal chemistry.
  • 加载中
    1. [1]

      [1] S.A.W. Gruner, E. Locardi, E. Lohof, H. Kessler, Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds, Chem. Rev. 102 (2002) 491-514.

    2. [2]

      [2] P.M. St. Hilaire, T.L. Lowary, M. Meldal, K. Bock, Oligosaccharide mimetics obtained by novel, rapid screening of carboxylic acid encoded glycopeptide libraries, J. Am. Chem. Soc. 120 (1998) 13312-13320.

    3. [3]

      [3] L. Jobron, G. Hummel, Solid-phase synthesis of unprotected N-glycopeptide building blocks for SPOT synthesis of N-linked glycopeptides, Angew. Chem. Int. Ed. 39 (2000) 1621-1624.

    4. [4]

      [4] L. Liu, C.S. Bennett, C.H. Wong, Advances in glycoprotein synthesis, Chem. Commun. (2006) 21-33.

    5. [5]

      [5] D.P. Gamblin, E.M. Scanlan, B.G. Davis, Glycoprotein synthesis: an update, Chem. Rev. 109 (2009) 131-163.

    6. [6]

      [6] G.M. Fang, Y.M. Li, F. Shen, et al., Protein chemical synthesis by ligation of peptide hydrazides, Angew. Chem. Int. Ed. 50 (2011) 7645-7649.

    7. [7]

      [7] Y. Hajihara, M. Izumi, K. Hirano, et al., Elucidating the function of complex-type oligosaccharides by use of chemical synthesis of homogeneous glycoproteins, Isr. J. Chem. 51 (2011) 917-929.

    8. [8]

      [8] J.S. Zheng, H.N. Chang, F.L. Wang, L. Liu, Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation, J. Am. Chem. Soc. 133 (2011) 11080-11083.

    9. [9]

      [9] V.L. Campo, I. Carvalho, S. Allman, B.G. Davis, R.A. Field, Chemical and chemoenzymatic synthesis of glycosyl-amino acids and glycopeptides related to Trypanosoma cruzi mucins, Org. Biomol. Chem. 5 (2007) 2645-2657.

    10. [10]

      [10] A. Nuzzi, A. Massi, A. Dondoni, General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic a-amination of C-glycosylalkyl aldehydes, Org. Lett. 10 (2008) 4485-4488.

    11. [11]

      [11] S.B. Cohen, R.L. Halcomb, Application of serine- and threonine-derived cyclic sulfamidates for the preparation of S-linked glycosyl amino acids in solution- and solid-phase peptide synthesis, J. Am. Chem. Soc. 124 (2002) 2534-2543.

    12. [12]

      [12] A.L. Handlon, B. Fraser-Reid, A convergent strategy for the critical .beta.-linked chitobiosyl-N-glycopeptide core, J. Am. Chem. Soc. 115 (1993) 3796-3797.

    13. [13]

      [13] G. Geisberger, E.B. Gyenge, D. Hinger, et al., Chitosan-thioglycolic acid as a versatile antimicrobial agent, Biomacromolecules 14 (2013) 1010-1017.

    14. [14]

      [14] S.M. Srinivas, N.V. Harohally, Improved synthesis of lysine- and argininederived amadori and Heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity, J. Agric. Food Chem. 60 (2012) 1522-1527.

    15. [15]

      [15] V.V. Mossine, C.L. Barnes, G.V. Glinsky, M.S. Feather, Molecular and crystal structure of N-(2-deoxy-D-aldohexos-2-yl)-glycines (Heyns compounds), Carbohydr. Res. 284 (1996) 11-24.

    16. [16]

      [16] K. Stefan, B. Wolfgang, Metal complexes of biologically important ligands. CXXXI. Pentamethylcyclopentadienyl halfsandwich complexes of rhodium and iridium with glycosyl-alpha-iminocarboxylates as chelate ligands, Z. Naturforsch. B 56 (2001) 62-68.

    17. [17]

      [17] C.Z. Tao, F. Liu, W.W. Liu, et al., Synthesis of N-aryl-D-glucosamines through copper-catalyzed C-N coupling, Tetrahedron Lett. 53 (2012) 7093-7096.

    18. [18]

      [18] C.Z. Tao, F. Liu, B. Xu, et al., Copper-catalyzed synthesis of N-aryl-D-glucosamines from arylboronic acids, J. Carbohydr. Chem. 32 (2013) 411-423.

    19. [19]

      [19] Z.Y. Hong, L. Liu, C.C. Hsu, C.H. Wong, Three-step synthesis of sialic acids and derivatives, Angew. Chem. Int. Ed. 45 (2006) 7417-7421.

    20. [20]

      [20] Z.Y. Hong, L. Liu, M. Sugiyama, Y. Fu, C.H. Wong, Concise synthesis of iminocyclitols via Petasis-type aminocyclization, J. Am. Chem. Soc. 131 (2009) 8352-8353.

    21. [21]

      [21] H.J. Xu, Y.Q. Zhao, T. Feng, Y.S. Feng, Chan-Lam-type S-arylation of thiols with boronic acids at room temperature, J. Org. Chem. 77 (2012) 2878-2884.

    22. [22]

      [22] J.J. Dai, J.H. Liu, D.F. Luo, L. Liu, Pd-catalysed decarboxylative Suzuki reactions and orthogonal Cu-based O-arylation of aromatic carboxylic acids, Chem. Commun. 47 (2011) 677-679.

    23. [23]

      [23] C.T. Yang, Z.Q. Zhang, Y.C. Liu, L. Liu, Copper-catalyzed cross-coupling reaction of organoboron compounds with primary alkyl halides and pseudohalides, Angew. Chem. Int. Ed. 50 (2011) 3904-3907.

    24. [24]

      [24] P.G.M. Wuts, T.W. Greene (Eds.), Greene's Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons, New York, 2007.

  • 加载中
    1. [1]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    2. [2]

      Tianle CaoNi YanYawen LiXinyi ZhangYue ZhuNaiyao LiZengrong WangGang He . D-A-D-A-D conjugated pyrenoviologens for electrochromism, electrofluorochromism, and detection of picric acid. Chinese Chemical Letters, 2025, 36(10): 111021-. doi: 10.1016/j.cclet.2025.111021

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    6. [6]

      Nana YangRui YuanXinyue FuXiao TianJin YuShengzhou MaLiuqing WenJiabin Zhang . Concise synthesis of NDP-activated uronic acid by an oxidation reaction insertion strategy. Chinese Chemical Letters, 2025, 36(8): 110757-. doi: 10.1016/j.cclet.2024.110757

    7. [7]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    8. [8]

      Qiang LuoJinfeng SunZhibo LiBin LiuJianxun Ding . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism. Chinese Chemical Letters, 2025, 36(7): 110433-. doi: 10.1016/j.cclet.2024.110433

    9. [9]

      Qi WeiHua XinXiaolong WangChangjuan QinYuanzhen SuDi LiJianxun Ding . Unimolecular chiral poly(amino acid)s as adjuvants of nanovaccines for augmented cancer immunotherapy. Chinese Chemical Letters, 2025, 36(11): 111477-. doi: 10.1016/j.cclet.2025.111477

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    12. [12]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

    13. [13]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    14. [14]

      Qingxuan KongChangwei JiangBin LyuZhaoting LiNing JiaoSong Song . Denitrative iodination of nitroarenes with hydroiodic acid. Chinese Chemical Letters, 2025, 36(10): 111444-. doi: 10.1016/j.cclet.2025.111444

    15. [15]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    16. [16]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    17. [17]

      Menglin ZhouLin ZhangXuefei ShanFengqin ChangWentong ChenXuguang AnGuangzhi Hu . Hydrangea-like B/N co-doped carbon-based electrochemical sensors for the efficient and sensitive detection of aristolochic acid in Aristolochia. Chinese Chemical Letters, 2025, 36(12): 111073-. doi: 10.1016/j.cclet.2025.111073

    18. [18]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    19. [19]

      Xiying WuAnze LiuYuzhong YanYing LuHuan Wang . Folic acid ameliorates the immunogenicity of PEGylated liposomes. Chinese Chemical Letters, 2025, 36(6): 110285-. doi: 10.1016/j.cclet.2024.110285

    20. [20]

      Jialin GuoMingrui GuYahui ChenTao XiongYiyang ZhangSimin ChenMingle LiXiaoqiang ChenXiaojun Peng . Nucleic acid delivery by lipid nanoparticles for organ targeting. Chinese Chemical Letters, 2025, 36(11): 110849-. doi: 10.1016/j.cclet.2025.110849

Metrics
  • PDF Downloads(0)
  • Abstract views(1104)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return