Citation: Qing-Yun Liu, Qing-Yan Jia, Ji-Qin Zhu, Qian Shao, Jun-Feng Fan, Dong-Mei Wang, Yan-Sheng Yin. Highly ordered arrangement of meso-tetrakis(4-aminophenyl)porphyrin in self-assembled nanoaggregates via hydrogen bonding[J]. Chinese Chemical Letters, ;2014, 25(05): 752-756. doi: 10.1016/j.cclet.2013.12.023 shu

Highly ordered arrangement of meso-tetrakis(4-aminophenyl)porphyrin in self-assembled nanoaggregates via hydrogen bonding

  • Corresponding author: Qing-Yun Liu,  Yan-Sheng Yin, 
  • Received Date: 6 November 2013
    Available Online: 30 December 2013

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (Nos. 51042013, 21271119) (Nos. 51042013, 21271119) Innovation Fund of Shanghai (No. 10170502400) (No. 10170502400) and Research Progect of "SUST Spring Bud" (No. 2008BWZ056). (No. J08LC11)

  • meso-Tetrakis(4-aminophenyl)porphyrin (TAPP) can self-assemble into nanostructures with different morphologies by a phase-transfer method. The morphologies (nanospheres, nanorods and nanothorns) of porphyrin nanoaggregates could be easily tuned just by changing the concentration of porphyrin in a proper solvent at room temperature. HRTEM images revealed the formation of highly ordered supramolecular arrays of TAPP, i.e., superlattice of TAPP molecules in nanoaggregates, which agreed well with the size of one molecule of TAPP. UV-vis absorption spectra showed an obvious red shift of the Soret band of TAPP, indicating the formation of J-aggregates of TAPP in nanoaggregates.
  • 加载中
    1. [1]

      [1] (a) J.M. Lehn, Perspectives in supramolecular chemistry - from molecular recognition towards molecular information processing and self-organization, Angew. Chem. Int. Ed. 29 (1990) 1304-1319; (b) Z.G. Tao, T.G. Zhan, T.Y. Zhou, X. Zhao, Z.T. Li, Synthesis, properties, and self-assembly of 2,3-bis(n-octyl)hexaazatriphenylene, Chin. Chem. Lett. 24 (2013) 453-456; (c) Y.J. Qin, Y.Y. Wang, M.X. Tang, Z.X. Guo, Layer-by-layer electrostatic selfassembly of anionic and cationic carbon nanotube, Chin. Chem. Lett. 21 (2010) 876-879.

    2. [2]

      [2] (a) J.D. Hartgerink, E. Beniash, S.I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers, Science 294 (2001) 1684-1688; (b) T. Kitamura, S. Nakaso, N. Mizoshita, et al., Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators, J. Am. Chem. Soc. 127 (2005) 14769-14775; (c) L. Wang, Y.L. Chen, Y. Bian, J.Z. Jiang, Controlling growth of porphyrin based nanostructures for tuning third-order NLO properties, J. Phys. Chem. C 117 (2013) 17352-17361.

    3. [3]

      [3] A.D. Schwab, D.E. Smith, B. Bond-Watts, et al., Photoconductivity of self-assembled porphyrin nanorods, Nano Lett. 4 (2004) 1261-1265.

    4. [4]

      [4] Z.C. Wang, Z.Y. Li, C.J. Medforth, J.A. Shelnutt, Self-assembly and self-metallization of porphyrin nanosheets, J. Am. Chem. Soc. 129 (2007) 2440-2441.

    5. [5]

      [5] (a) D.Y. Yan, Y.F. Zhou, J. Hou, Supramolecular self-assembly of macroscopic tubes, Science 303 (2004) 65-67; (b) T. Shimizu, M. Masuda, H. Minamikawa, Supramolecular nanotube architectures based on amphiphilic molecules, Chem. Rev. 105 (2005) 1401-1443; (c) L. Zhi, T. Gorelik, J. Wu, U. Kolb, K. Müllen, Nanotubes fabricated from Ni-naphthalocyanine by a template method, J. Am. Chem. Soc. 127 (2005) 12792-12793; (d) J.S. Hu, Y.G. Guo, H.P. Liang, L.J. Wan, L. Jiang, Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms, J. Am. Chem. Soc. 127 (2005) 17090-17095; (e) R.R. Sun, L. Wang, J. Tian, X.M. Zhang, J.Z. Jiang, Self-assembled nanostructures of optically active phthalocyanine derivatives. Effect of central metal ion on the morphology, dimension, and handedness, Nanoscale 4 (2012) 6990-6996.

    6. [6]

      [6] (a) T. Hasobe, K. Saito, P.V. Kamat, et al., Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters, J. Mater. Chem. 17 (2007) 4160-4170; (b) T. Hasobe, A.S.D. Sandanayaka, T. Wada, Y. Araki, Fulleren-encapsulated porphyrin hexagonal nanorods. An anisotropic donor-acceptor composite for efficient photoinduced electron transfer and light energy conversion, Chem. Commun. (2008) 3372-3374.

    7. [7]

      [7] (a) T. Komatsu, E. Tsuchida, C. Bottcher, et al., Solid vesicle membrane made of meso-tetrakis[(bixinylamino)-o-phenyl] porphyrins, J. Am. Chem. Soc. 119 (1997) 11660-11665; (b) J.H. Fuhrhop, Stereochemistry of lipid micelles and vesicles that survive drying, in: J. Texter (Ed.), Reactions and Synthesis in Surfactant Systems, CRC Press, New York, 2001, p. 715.

    8. [8]

      [8] L. Wang, H. Liu, J. Hao, Stable porphyrin vesicles formed in non-aqueous media and dried to produce hollow shells, Chem. Commun. (2009) 1353-1355.

    9. [9]

      [9] Z.C. Wang, C.J. Medforth, J.A. Shelnutt, Porphyrin nanotubes by ionic self-assembly, J. Am. Chem. Soc. 126 (2004) 15954-15955.

    10. [10]

      [10] H. Ozawa, H. Tanaka, M. Kawao, S. Uno, K. Nakazato, Preparation of organic nanoscrews from simple porphyrin derivatives, Chem. Commun. (2009) 7411- 7413.

    11. [11]

      [11] (a) C.S. Huang, Y.L. Li, Y.L. Song, et al., Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties, Adv. Mater. 22 (2010) 3532-3536; (b) C.S. Huang, Y.L. Li, J.E. Yang, et al., Construction of multidimensional nanostructures by self-assembly of a porphyrin analogue, Chem. Commun. 46 (2010) 3161-3163.

    12. [12]

      [12] M. Shirakawa, S.I. Kawano, N. Fujita, K. Sada, S. Shinkai, Hydrogen-bond-assisted control of H versus J aggregation mode of porphyrins stacks in an organogel system, J. Org. Chem. 68 (2003) 5037-5044.

    13. [13]

      [13] (a) Z.Y. Yang, L.H. Gan, S.B. Lei, et al., Self-assembly of PcOC8 and its sandwich lanthanide complex Pr(PcOC8)2 with oligo (phenylene-ethynylene) molecules, J. Phys. Chem. B 109 (2005) 19859-19865; (b) T. Takami, D.P. Arnold, A.V. Fuchs, et al., Two-dimensional crystal growth and stacking of bis(phthalocyaninato) rare earth sandwich complexes at the 1-phenyloctane/ graphite interface, J. Phys. Chem. B 110 (2006) 1661-1664; (c) H.Y. Ma, Y.O.L. Yang, N. Pan, et al., Ordered molecular assemblies of substituted bis(phthalocyaninato) rare earth complexes on Au(1 1 1): in situ scanning tunneling microscopy and electrochemical studies, Langmuir 22 (2006) 2105- 2111; (d) T. Takami, T. Ye, B.K. Pathem, et al., Manipulating double-decker molecules at the liquid-solid interface, J. Am. Chem. Soc. 132 (2010) 16460-16466.

    14. [14]

      [14] A.D. Adler, F.R. Longo, W. Shergalis, Mechanistic investigations of porphyrin syntheses. I. Preliminary studies on ms-tetraphenylporphin, J. Am. Chem. Soc. 86 (1964) 3145-3149.

    15. [15]

      [15] (a) X.G. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and Ⅲ-V colloidal semiconductor nanocrystal growth: "focusing" of size distributions, J. Am. Chem. Soc. 120 (1998) 5343-5344; (b) H.T. Hsieh, W.K. Chin, C.S. Tan, Facile synthesis of silver nanoparticles in CO2-expanded liquids from silver isostearate precursor, Langmuir 26 (2010) 10031-10035.

    16. [16]

      [16] R.A. Lucky, R.H. Sui, J.M.H. Lo, P.A. Charpentier, Effect of solvent on the crystal growth of one-dimensional ZrO2-TiO2 nanostructures, Cryst. Growth Des. 10 (2010) 1598-1604.

    17. [17]

      [17] Q.Y. Liu, J.Q. Zhu, T. Sun, et al., Porphyrin nanotubes composed of highly ordered molecular arrays prepared by anodic aluminum template method, RSC Adv. 3 (2013) 2765-2769.

    18. [18]

      [18] Y.F. Qiu, P.L. Chen, M.H. Liu, Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality, J. Am. Chem. Soc. 132 (2010) 9644-9652.

    19. [19]

      [19] X.C. Wu, W. Lü, Q.B. Wang, et al., Sandwich-type mixed(phthalocyaninato)(porphyrinato) rare earth double-decker complexes with decreased molecular symmetry of Cs: single crystal structure and self-assembled nano-structure, Dalton Trans. 40 (2011) 107-113.

    20. [20]

      [20] G.F. Lu, X.M. Zhang, X. Cai, J.Z. Jiang, Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(p-hydroxyphenyl)porphyrins with hydrogen bonding and metal-ligand coordination bonding, J. Mater. Chem. 19 (2009) 2417-2424.

    21. [21]

      [21] S. Tamaru, M. Nakamura, M. Takeuchi, S. Shinkai, Rational design of a sugarappended porphyrin gelator that is forced to assemble into a one-dimensional aggregate, Org. Lett. 3 (2001) 3631-3634.

    22. [22]

      [22] M. Kasha, H.R. Rawls, M.A. El-Bayoumi, The exciton model in molecular spectroscopy, Pure Appl. Chem. 11 (1965) 371-392.

    23. [23]

      [23] T. Kobayashi (Ed.), J-Aggregates, World Scientific, Singapore, 1996, pp. 1-40.

    24. [24]

      [24] (a) L. Pan, B.C. Noll, X. Wang, Self-assembly of free-base tetrapyridylporphyrin units by metal ion coordination, Chem. Commun. (1999) 157-158; (b) L.L. Li, C.J. Yang, W.H. Chen, K.J. Lin, Towards the development of electrical conduction and lithium-ion transport in a tetragonal porphyrin wire, Angew. Chem. Int. Ed. 42 (2003) 1505-1508; (c) K. Yamashita, Y. Matsumura, Y. Harima, S. Miura, H. Suzuki, n-Type semiconducting behavior of 5,10,15,20-tetra(3-pyridyl)porphyrin, Chem. Lett. (1984) 489-492.

  • 加载中
    1. [1]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    2. [2]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    3. [3]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    4. [4]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    5. [5]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    6. [6]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    7. [7]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    8. [8]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    9. [9]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    10. [10]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    11. [11]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    12. [12]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    13. [13]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    14. [14]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    15. [15]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    18. [18]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return