Citation: Srinivasa Rao Jetti, Anjna Bhatewara, Tanuja Kadre, Shubha Jain. Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions[J]. Chinese Chemical Letters, ;2014, 25(3): 469-473. doi: 10.1016/j.cclet.2013.12.022 shu

Silica-bonded N-propyl sulfamic acid as an efficient recyclable catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under heterogeneous conditions

  • Corresponding author: Srinivasa Rao Jetti, 
  • Received Date: 14 October 2013
    Available Online: 5 December 2013

  • Silica-bonded N-propyl sulfamic acid (SBNPSA) catalyzed one-pot three component Biginelli condensation of different substituted aromatic aldehydes with ethyl acetoacetate and urea/thoiurea to the respective 3,4-dihydropyrimidin-2-(1H)-ones and thiones in environment friendly procedure is described. The facile reaction conditions, simple isolation and purification procedures of this method make it a good option for the synthesis of dihydropyrimidinones.
  • 加载中
    1. [1]

      [1] C.O. Kappe, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron 49 (32) (1993) 6937-6963.

    2. [2]

      [2] K.S. Atwal, B.N. Swanson, S.E. Unger, et al., Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents, J. Med. Chem. 34 (1991) 806-811.

    3. [3]

      [3] B.B. Snider, Z.P. Shi, Biomimetic synthesis of (±)-crambines A, B, C1, and C2. Revision of the structure of crambines B and C1, J. Org. Chem. 58 (1993) 3828-3839.

    4. [4]

      [4] B.B. Snider, J. Chen, A.D. Patil, A. Freyer, Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzelladines A and D, Tetrahedron Lett. 37 (1996) 6977-6980.

    5. [5]

      [5] C.O. Kappe, Recent advances in Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888.

    6. [6]

      [6] K. Folkers, H.J. Harwood, T.B. Johnson, Research on pyrimidines. cxxx. Synthesis of 2-keto-1,2,3,4-tetrahydropyrimidines, J. Am. Chem. Soc. 54 (1932) 3751-3758.

    7. [7]

      [7] J.S. Yadav, B.V. Subba Reddy, E. Jagan Reddy, T. Ramalingam, Microwave-assisted efficient synthesis of dihydro pyrimidines: improved high yielding protocol for the Biginelli reaction, J. Chem. Res. Sci. 7 (2000) 354-355.

    8. [8]

      [8] K.S. Atwal, B.C. O'Reilly, J.Z. Gougoutas, M.F. Malley, Synthesis of substituted 1,2,3,4-tetrahydro-6-methyl-2-thioxo-5-pyrimidinecarboxylic acid esters, Heterocycles 26 (1987) 1189-1192.

    9. [9]

      [9] E.H. Hu, D.R. Sidler, U.H. Dolling, Unprecedented catalytic three component onepot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydro pyrimidin-2(1H)-ones, J. Org. Chem. 63 (1998) 3454-3457.

    10. [10]

      [10] C.O. Kappe, S.F. Falsone, Polyphosphate ester-mediated synthesis of dihydropyrimidines. Improved conditions for the Biginelli reaction, Synlett 7 (1998) 718-720.

    11. [11]

      [11] C.O. Kappe, D. Kumar, R.S. Varma, Microwave-assisted high-speed parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones using a solventless Biginelli condensation protocol, Synthesis 10 (1999) 1799-1803.

    12. [12]

      [12] F. Bigi, S. Carloni, B. Frullanti, R. Maggi, G. Sartori, A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF, Tetrahedron Lett. 40 (1999) 3465-3468.

    13. [13]

      [13] B.C. Ranu, A. Hajra, U. Jana, Indium(Ⅲ) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction, J. Org. Chem. 65 (2000) 6270-6272.

    14. [14]

      [14] J. Lu, H. Ma, Iron(Ⅲ)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction, Synlett 1 (2000) 63-64.

    15. [15]

      [15] J. Lu, Y.J. Bai, Z.J. Wang, B.Q. Yang, H.R. Ma, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst, Tetrahedron Lett. 41 (2000) 9075-9078.

    16. [16]

      [16] Y. Ma, C. Qian, L. Wang, M. Yang, Lanthanide triflate catalyzed Biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions, J. Org. Chem. 65 (2000) 3864-3868.

    17. [17]

      [17] J.C. Bussolari, P.A. McDonnell, A new substrate for the Biginelli cyclocondensation: direct preparation of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones from a β-keto carboxylic acid, J. Org. Chem. 65 (2000) 6777-6779.

    18. [18]

      [18] J.S. Yadav, B.V.S. Reddy, K.B. Reddy, K.S. Raj, A.R. Prasad, Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones with ceric ammonium nitrate, J. Chem. Soc., Perkin Trans. 1 (2001) 1939-1941.

    19. [19]

      [19] K.A. Kumar, M. Kasthuraiah, C.S. Reddy, C.D. Reddy, Mn(OAc)3·2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones, Tetrahedron Lett. 42 (2001) 7873-7875.

    20. [20]

      [20] A. Dondoni, A. Massi, Parallel synthesis of dihydropyrimidinones using Yb(Ⅲ)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction, Tetrahedron Lett. 42 (2001) 7975-7978.

    21. [21]

      [21] J. Peng, Y. Deng, Synthesis and revision of the relative configuration of fudecalone, Tetrahedron Lett. 42 (2001) 917-919.

    22. [22]

      [22] K. Ramalinga, P. Vijayalakshmi, T.N.B. Kaimal, Bismuth(Ⅲ)-catalyzed synthesis of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction, Synlett 6 (2001) 863-865.

    23. [23]

      [23] J.S. Yadav, B.V. Subba Reddy, R. Srinivas, C. Venugopal, T. Ramalingam, LiClO4-catalyzed one-pot synthesis of dihydropyrimidinones: an improved protocol for Biginelli reaction, Synthesis 9 (2001) 1341-1345.

    24. [24]

      [24] N.Y. Fu, Y.F. Yuan, Z. Cao, et al., Indium(Ⅲ) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction, Tetrahedron 58 (2002) 4801-4807.

    25. [25]

      [25] J. Lu, Y.J. Bai, Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones, Synthesis 4 (2002) 466-470.

    26. [26]

      [26] Ch.V. Reddy, M. Mahesh, P.V.K. Raju, T.R. Babu, V.V.N. Reddy, Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett. 43 (2002) 2657-2659.

    27. [27]

      [27] A.S. Prabhakar, G.K. Dewkar, A. Sudalai, Cu(OTf)2: a reusable catalyst for highyield synthesis of 3,4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett. 44 (2003) 3305-3308.

    28. [28]

      [28] A.G. Choghamarani, P. Zamani, Three component reactions: an efficient and green synthesis of 3,4-dihydropyrimidin-2-(1H)-ones and thiones using silica gel-supported L-pyrrolidine-2-carboxylic acid-4-hydrogen sulfate, Chin. Chem. Lett. 24 (2013) 804-808.

    29. [29]

      [29] S. Rostamnia, F. Pourhassan, The SBA-15/SO3H nanoreactor as a highly efficient and reusable catalyst for diketene-based, four-component synthesis of polyhydroquinolines and dihydropyridines under neat conditions, Chin. Chem. Lett. 24 (2013) 401-403.

    30. [30]

      [30] S. Rostamnia, K. Lamei, Diketene-based neat four-component synthesis of the dihydropyrimidinones and dihydropyridine backbones using silica sulfuric acid (SSA), Chin. Chem. Lett. 23 (2012) 930-932.

    31. [31]

      [31] X.C. Wang, L.J. Zhang, Z. Zhang, Z.J. Quan, PEG-OSO3Has an efficient and recyclable catalyst for the synthesis of β-amino carbonyl compounds via the Mannich reaction in PEG-H2O, Chem. Lett. 23 (2012) 423-426.

    32. [32]

      [32] M.A. Bigdeli, G. Gholami, E. Sheikhhosseini, P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli reaction in water and under solvent free conditions, Chem. Lett. 22 (2011) 903-906.

    33. [33]

      [33] A. Corma, H. Garcia, Organic reactions catalyzed over solid acids, Catal. Today 38 (1997) 257-308.

    34. [34]

      [34] B. Karimi, D. Zareyee, A high loading sulfonic acid-functionalized ordered nanoporous silica as an efficient and recyclable catalyst for chemoselective deprotection of tert-butyldimethylsilyl ethers, Tetrahedron Lett. 46 (2005) 4661-4665.

    35. [35]

      [35] B. Karimi, M. Khalkhali, Solid silica-based sulfonic acid as an efficient and recoverable interphase catalyst for selective tetrahydropyranylation of alcohols and phenols, J. Mol. Catal. A: Chem. 232 (2005) 113-117.

    36. [36]

      [36] I.K. Mbaraka, D.R. Radu, V.S. Lin, B.H. Shanks, Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid, J. Catal. 219 (2003) 329-336.

    37. [37]

      [37] K. Wilson, A.F. Lee, D.J. Macquarrie, J.H. Clark, Structure and reactivity of sol-gel sulphonic acid silicas, Appl. Catal. A: Gen. 228 (2002) 127-133.

    38. [38]

      [38] X.L. Shi, H.X. Yang, M.L. Tao, W.Q. Zhang, Sulfonic acid-functionalized polypropylene fiber: highly efficient and recyclable heterogeneous Brønsted acid catalyst, RSC Adv. 3 (2013) 3939-3945.

    39. [39]

      [39] J. Peng, Y. Deng, Ionic liquids catalyzed Biginelli reaction under solvent-free conditions, Tetrahedron Lett. 42 (2001) 5917-5919.

    40. [40]

      [40] R. Ghosh, S. Maiti, A. Chakraborty, In(OTf)3-catalysed one-pot synthesis of 3,4-dihydropyrimidin-2(lH)-ones, J. Mol. Catal. A: Chem. 217 (2004) 47-50.

  • 加载中
    1. [1]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    2. [2]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    3. [3]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    4. [4]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    5. [5]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    6. [6]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    7. [7]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    8. [8]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    9. [9]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    10. [10]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    11. [11]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    12. [12]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    17. [17]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    18. [18]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

Metrics
  • PDF Downloads(0)
  • Abstract views(525)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return