Citation: Sangaraiah Nagarajan, Poovan Shanmugavelan, Murugan Sathishkumar, Ramasamy Selvi, Alagusundaram Ponnuswamy, Hariharan Harikrishnan, Vellasamy Shanmugaiah. An eco-friendly water mediated synthesis of 1,2,3-triazolyl-2-aminopyrimidine hybrids as highly potent anti-bacterial agents[J]. Chinese Chemical Letters, ;2014, 25(3): 419-422. doi: 10.1016/j.cclet.2013.12.017 shu

An eco-friendly water mediated synthesis of 1,2,3-triazolyl-2-aminopyrimidine hybrids as highly potent anti-bacterial agents

  • Corresponding author: Alagusundaram Ponnuswamy,  Vellasamy Shanmugaiah, 
  • Received Date: 11 September 2013
    Available Online: 10 December 2013

  • An elegant and efficient synthesis of novel 1,2,3-triazole fused 2-aminopyrimidine hybrids has been accomplished for the first time in the green solvent viz. water. The hybrid molecules exhibit significant anti-bacterial activity when screened against three human pathogens viz. Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae. In comparison to the commercially marketed drug tetracycline, some of them are equally potent and a few are more potent.
  • 加载中
    1. [1]

      [1] R.P. Mishra, E. Oviedo-Orta, P. Prachi, R. Rappuoli, F. Bagnoli, Vaccines and antibiotic resistance, Curr. Opin. Microbiol. 15 (2012) 596-602.

    2. [2]

      [2] L.K. Siu, K.M. Yeh, J.C. Lin, C.P. Fung, F.Y. Chang, Klebsiella pneumoniae liver abscess: a new invasive syndrome, Lancet Infect. Dis. 12 (2012) 881-887.

    3. [3]

      [3] A.R. Marra, S.B. Wey, A. Castelo, et al., Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) production on clinical outcome in a hospital with high ESBL prevalence, BMC Infect. Dis. 6 (2006) 24, http://dx.doi.org/10.1186/1471-2334-6-24.

    4. [4]

      [4] (a) H. Harikrishnan, A. Naif AbdullahI, K. Ponmurugan, R. Shyam Kumar, Nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial, Chalcogenide Lett. 9 (2012) 509-515; (b) G.P. Bodey, R. Bolivar, V. Fainstein, L. Jadeja, Infections Caused by Pseudomonas aeruginosa, Rev. Infect. Dis. 5 (1983) 279-313.

    5. [5]

      [5] I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev. 65 (2001) 232-260.

    6. [6]

      [6] V. Yaziji, D. Rodríguez, H. Gutié rrez-de-Terán, et al., Pyrimidine derivatives as potent and selective A3 adenosine receptor antagonists, J. Med. Chem. 54 (2011) 457-471.

    7. [7]

      [7] M.S. Mohamed, S.M. Awad, A.I. Sayed, Synthesis of certain pyrimidine derivatives as antimicrobial agents and anti-inflammatory agents, Molecules 15 (2010) 1882-1890.

    8. [8]

      [8] X. Chu, W. Depinto, D. Bartkovitz, et al., Discovery of [4-amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl) methanone (R547) A potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity, J. Med. Chem. 49 (2006) 6549-6560.

    9. [9]

      [9] K.S. Atwal, G.C. Rovnyak, S.D. Kimball, et al., Dihydropyrimidine calcium channel blockers. Ⅱ. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potentmimics of dihydropyridines, J.Med. Chem. 33 (1990) 2629-2635.

    10. [10]

      [10] (a) N. Singh, S.K. Pandey, N. Anand, et al., Synthesis, molecular modeling and bioevaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents, Bioorg. Med. Chem. 21 (2011) 4404-4408; (b) Y.F. Zhao, Z.J. Liu, X. Zhai, et al., Synthesis and in vitro antitumor activity of novel diaryl urea derivatives, Chin. Chem. Lett. 24 (2013) 386-388.

    11. [11]

      [11] X.L. Wang, K. Wan, C.H. Zhou, Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities, Eur. J. Med. Chem. 45 (2010) 4631-4639.

    12. [12]

      [12] S.R. Wang, Q.L. Wang, Y. Wang, et al., Novel anthraquinone derivatives: synthesis via click chemistry approach and their induction of apoptosis in BGC gastric cancer cells via reactive oxygen species (ROS)-dependent mitochondrial pathway, Bioorg. Med. Chem. 18 (2008) 6505-6508.

    13. [13]

      [13] M. Whiting, J.C. Tripp, Y.C. Lin, et al., Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization, J. Med. Chem. 49 (2006) 7697-7710.

    14. [14]

      [14] P. Pramitha, D. Bahulayan, Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi-Mannich triazole randomization using copper catalyzed alkyne azide click chemistry, Bioorg. Med. Chem. Lett. 22 (2012) 2598-2603.

    15. [15]

      [15] (a) M. Yu, S.S. Pochapsky, B.B. Snider, Synthesis of 7-epineoptilocaulin, mirabilin B, and isoptilocaulin. A unified biosynthetic proposal for the ptilocaulin and batzelladine alkaloids. Synthesis and structure revision of netamines E and G, J. Org. Chem. 73 (2008) 9065-9074; (b) A. Rahmati, Z. Khalesi, Catalyst free synthesis of fused pyrido[2,3-d]pyrimidines and pyrazolo[3,4-b]pyridines in water, Chin. Chem. Lett. 23 (2012) 1149-1152.

    16. [16]

      [16] N. Sunduru, S. Nishi, P.M.S. Palne, S. Chauhan, Gupta Synthesis and antileishmanial activity of novel 2,4,6-trisubstituted pyrimidines and 1,3,5-triazines, Eur. J. Med. Chem. 44 (2009) 2473-2481.

    17. [17]

      [17] M. Meisenbach, T. Allmendinger, C.P. Mak, Scale-up of the synthesis of a pyrimidine derivative directly on solid support, Org. Process Res. Dev. 7 (2003) 553-558.

    18. [18]

      [18] C.I. Herrerias, X.Q. Yao, Z.P. Li, C.J. Li, Reactions of C-H bonds in water, Chem. Rev. 107 (2007) 2546-2562.

    19. [19]

      [19] M. Sathishkumar, P. Shanmugavelan, S. Nagarajan, et al., Solvent-free protocol for amide bond formation via trapping of nascent phosphazenes with carboxylic acids, Tetrahedron Lett. 52 (2011) 2830-2833.

    20. [20]

      [20] S. Nagarajan, P. Ran, P. Shanmugavelan, et al., The catalytic activity of titania nanostructures in the synthesis of amides under solvent-free conditions, New J. Chem. 36 (2012) 1312-1319.

    21. [21]

      [21] S. Nagarajan, P. Shanmugavelan, M. Sathishkumar, et al., Chemoselectivity in coupling of azides with thioacids in solution-phase and solvent-free conditions, Synth. Commun. 43 (2013) 37-41.

    22. [22]

      [22] M. Sathishkumar, K. Palanikumar, A. Mariappan, S. Archana, A. Ponnuswamy, An environmentally benign solvent/catalyst-free one-pot synthesis of N-substituted phthalimides via Aza-wittig reaction, J. Iran. Chem. Soc. 9 (2012) 681-685.

    23. [23]

      [23] P. Shanmugavelan, S. Nagarajan, M. Sathishkumar, et al., Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem. Lett. 21 (2011) 7273-7276.

    24. [24]

      [24] P. Shanmugavelan, M. Sathishkumar, S. Nagarajan, et al., The first solvent-free, microwave-accelerated, three-component synthesis of thiazolidin-4-ones via one-pot tandem Staudinger/aza-Wittig reaction, J. Heterocyclic. Chem. (1705), http://dx.doi.org/10.1002/jhet.

    25. [25]

      [25] A. Ponnuswamy, P. Shanmugavelan, S. Nagarajan, M. Sathishkumar, The first onepot, solvent-free, microwave-accelerated, three-component synthesis of spirothiazolidin-4-ones via Staudinger/Aza-Wittig coupling/cyclization, Helv. Chim. Acta 95 (2012) 922-928.

    26. [26]

      [26] P. Shanmugavelan, M. Sathishkumar, S. Nagarajan, A. Ponnuswamy, A facile synthesis of 1,2,3-triazolyl indole hybrids via SbCl3-catalysed Michael addition of indoles to 1,2,3-triazolyl chalcones, J. Chem. Sci. 124 (2012) 941-950.

    27. [27]

      [27] M. Sathishkumar, P. Shanmugavelan, S. Nagarajan, M. Dinesh, A. Ponnuswamy, Water promoted one pot three-component synthesis of tetrazoles, New J. Chem. 37 (2013) 488-493.

    28. [28]

      [28] N. Sangaraiah, S. Murugan, S. Poovan, et al., Facile water promoted synthesis of 1,2,3-triazolyl dihydropyrimidine-2-thione hybrids—highly potent antibacterial agents, Eur. J. Med. Chem. 58 (2012) 464-469.

    29. [29]

      [29] P. Shanmugavelan, S. Nagarajan, et al., An efficient and environmentally benign access towards synthesis of novel 1,2,3-triazolyl-pyrazoline hybrids, Lett. Org. Chem., in press.

    30. [30]

      [30] P. Shanmugavelan, M. Sathishkumar, S. Nagarajan, A. Ponnuswamy, An efficient and facile synthesis of novel 1,2,3-triazolyl-N-acylpyrazoline hybrids, Chin. Chem. Lett. 25 (2014) 146-148.

  • 加载中
    1. [1]

      Xiangrong PanXixi HouYuhang DuZhixin PangShiyang HeLan WangJianxue YangLongfei MaoJianhua QinHaixia WuBaozhong LiuZhan ZhouLufang MaChaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536

    2. [2]

      Yuyao GuanBaoting YuJun DingTingting SunZhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645

    3. [3]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    4. [4]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    5. [5]

      Xicheng LiDong MoShoushan HuMeng PanMeng WangTingyu YangChangxing QuYujia WeiJianan LiHanzhi DengZhongwu BeiTianying LuoQingya LiuYun YangJun LiuJun WangZhiyong Qian . A Pt@ZIF-8/ALN-ac/GelMA composite hydrogel with antibacterial, antioxidant, and osteogenesis for periodontitis. Chinese Chemical Letters, 2025, 36(9): 110674-. doi: 10.1016/j.cclet.2024.110674

    6. [6]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    7. [7]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    8. [8]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    9. [9]

      Wen ZhongDan ZhengXukun LiaoYadi ZhouYan JiangTing GaoMing LiChengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448

    10. [10]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    11. [11]

      Ruijun SongHuixu XieGuiting Liu . Advances of MXene-based hydrogels for chronic wound healing. Chinese Chemical Letters, 2025, 36(7): 110442-. doi: 10.1016/j.cclet.2024.110442

    12. [12]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    13. [13]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    14. [14]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    17. [17]

      Peipei CUIYawen ZHENGPan LIPeiyan GUANZhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152

    18. [18]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    19. [19]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    20. [20]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

Metrics
  • PDF Downloads(0)
  • Abstract views(1167)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return