Citation:
Sakineh Asghari, Samaneh Ramezani, Mojtaba Mohseni. Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate[J]. Chinese Chemical Letters,
;2014, 25(3): 431-434.
doi:
10.1016/j.cclet.2013.12.010
-
The three-component reaction of 4-hydroxy-1-methyl-2(1H)-quinolinone, aromatic aldehydes and ethyl cyanoacetate was carried out in the presence of a catalytic amount of 4-dimethyl aminopyridine (DMAP) in aqueous ethanol. The reactions result in the formation of pyranoquinoline derivatives in excellent yields. Antibacterial activity has been evaluated against Gram positive and Gram negative bacteria for some of the synthesized compounds. The results indicated that these compounds are moderately effective against bacterial growth and their effectiveness is highest against Pseudomonas aeruginosa.
-
-
-
[1]
[1] A. McKillop, L. McLaren, R.J. Watson, R.J. Taylor, N. Lewis, A concise synthesis of the novel antibiotic aranorosin, Tetrahedron Lett. 34 (1993) 5519-5522.
-
[2]
[2] I.S. Chen, S.J. Wu, I.J. Tsai, et al., Chemical and bioactive constituents from Zanthoxylum simulans, J. Nat. Prod. 57 (1994) 1206-1211.
-
[3]
[3] M.F. Grundon, The Alkaloids: Quinoline Alkaloids Related to Anthranilic Acid, Academic Press, London, 1988, pp. 341-439.
-
[4]
[4] W.N. Setzer, B. Vogler, R.B. Bates, et al., HPLC-NMR/HPLC-MS analysis of the bark extract of Stauranthus perforates, Phytochem. Anal. 14 (2003) 54-59.
-
[5]
[5] A. Afonso, S.W. McCombie, J. Weinstein, Quinoline-diones, US Patent 5179093A (1993).
-
[6]
[6] G.C. Sharp, Antifungal methods employing certain carbostyrils, US Patent 3836657A (1974).
-
[7]
[7] C. Jolivet, C. Rivalle, E. Bisagni, Synthesis of pyrano[2,3-h]quinolines as tricyclic acronycine analogues, Heterocycles 43 (1996) 995-1005.
-
[8]
[8] A. Afonso, J. Weinstein, M.J. Gentles, Alkyl and acyl substituted quinolines, US Patent 5382572A (1995).
-
[9]
[9] M. Miyoshi, N. Yoneda, R. Matsumoto, M. Suzuki, 3-Amino-4-hydroxycarbostyril derivatives, Tanabe Seiyaku Co. Ltd., Jpn. Kokai, 7746083 (1977).
-
[10]
[10] S.D. Mathada, B.H. Mathada, Synthesis and antimicrobial activity of some 5-substituted-3-phenyl-Nb-(substituted-2-oxo-2H-pyrano[2,3-b]quinoline-3-carbonyl)-1H-indole-2-carboxyhydrazide, Chem. Pharm. Bull. 57 (2009) 557-560.
-
[11]
[11] K.L. Hopkins, R.H. Davies, E.J. Threfall, Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments, Int. J. Antimicrob. Agents 25 (2005) 358-373.
-
[12]
[12] M. Ramesh, P.S. Mohan, P. Shanmugam, A convenient synthesis of flindersine, atanine and their analogues, Tetrahedron 40 (1984) 4041-4049.
-
[13]
[13] X.F. Duan, J. Zeng, Z.B. Zhang, G.F. Zi, A facile two-step synthesis of 2-arylbenzofurans based on the selective cross McMurry couplings, J. Org. Chem. 72 (2007) 10283-10286.
-
[14]
[14] P. Roy, B.K. Ghorai, One-pot synthesis of pyrano[4,3-b]quinolinones from 2-alkynyl-3-formylquinolines via oxidative 6-endo-dig ring closure, Tetrahedron Lett. 53 (2012) 235-238.
-
[15]
[15] J.H. Ye, K.Q. Ling, Y. Zhang, N. Li, J.H. Xu, Syntheses of 2-hydroxypyrano[3,2-c]quinolin-5-ones from 4-hydroxyquinolin-2-ones by tandem Knoevenagel condensation with aldehyde and Michael addition of enamine with the quinone methide-thermo-and photochemical approaches, J. Chem. Soc., Perkin Trans. 1 (1999) 2017-2024.
-
[16]
[16] X.S. Wang, Q. Li, J.R. Wu, S.J. Tu, Efficient method for the synthesis of pyranoquinoline, thiopyranoquinoline, thienoquinoline, and naphtho[2,7]naphthyridine derivatives catalyzed by iodine, J. Comb. Chem. 11 (2009) 433-437.
-
[17]
[17] L. El Kaim, L. Grimaud, X.F.L. Goff, A. Schiltz, Smiles cascades toward heterocyclic scaffolds, Org. Lett. 13 (2011) 534-536.
-
[18]
[18] I.V. Ukrainets, R.G. Red'kin, L.V. Sidorenko, A.V. Turov, 4-Hydroxy-2-quinolones 172. Synthesis and structure of 4,3'-spiro[(6-allyl-2-amino-5-oxo-5,6-dihydro-4h-pyrano-[3,2-c]quinoline-3-carbo-nitrile)-20-oxindole], Chem. Heterocycl. Compd. 45 (2009) 1478-1484.
-
[19]
[19] A.T. Khan, M. Lal, S. Ali, M.M. Khan, One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst, Tetrahedron Lett. 52 (2011) 5327-5332.
-
[20]
[20] E. Altieri, M. Cordaro, G. Grassi, F. Risitano, A. Scala, Regio and diastereoselective synthesis of functionalized 2,3-dihydrofuro[3,2-c]coumarins via a one-pot threecomponent reaction, Tetrahedron 66 (2010) 9493-9496.
-
[21]
[21] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.
-
[22]
[22] L. El Kaïm, L. Grimaud, S. Wagschal, Toward pyrrolo[2,3-d]pyrimidine scaffolds, J. Org. Chem. 75 (2010) 5343-5346.
-
[23]
[23] T. Godet, C. Vaxelaire, C. Michel, A. Milet, P. Belmont, Silver versus gold catalysis in tandem reactions of carbonyl functions onto alkynes: a versatile access to furoquinoline and pyranoquinoline cores, Chem. Eur. J. 13 (2007) 5632-5641.
-
[24]
[24] S. Banerjee, A. Horn, H. Khatri, G. Sereda, A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst, Tetrahedron Lett. 52 (2011) 1878-1881.
-
[25]
[25] M. Yoshida, Y. Fujino, K. Saito, T. Doi, Regioselective synthesis of flavone derivatives via DMAP-catalyzed cyclization of o-alkynoylphenols, Tetrahedron 67 (2011) 9993-9997.
-
[26]
[26] S. Asghari, M. Qandalee, Three-component, one-pot synthesis of new functionalized pyrrolines, Synth. Commun. 40 (2010) 2172-2177.
-
[27]
[27] S. Asghari, A.K. Habibi, Synthesis of halogenated α,β-unsaturated γ-butyrolactone derivatives by triphenylphosphine-catalyzed cyclization of α-halogeno ketones with dialkyl acetylenedicarboxylates, Helv. Chim. Acta 95 (2012) 810-817.
-
[28]
[28] S. Asghari, A. Khabbazi Habibi, One pot three-component regioselective and diastereoselective synthesis of halogenated pyrido[2,1-b][1,3]oxazines, Tetrahedron 68 (2012) 8890-8898.
-
[29]
[29] S. Asghari, M. Qandalee, Z. Naderi, Z. Sobhaninia, One-pot synthesis of 4-arylquinolines from aromatic aminoketones and vinylphosphonium salts, Mol. Divers. 14 (2010) 569-574.
-
[30]
[30] S. Asghari, M. Tajbakhsh, V. Taghipour, A facile route to N-acetyl a,b-unsaturated g-lactam derivatives using ethyl acetamidocyanoacetate and dialkyl acetylenedicarboxylate in the presence of triphenylphosphine, Tetrahedron Lett. 49 (2008) 1824-1827.
-
[31]
[31] F.C. Tenover, Antibiotic susceptibility testing, in: Encyclopedia of Microbiology, 3rd ed., Academic Press, Oxford, 2009p. 67.
-
[32]
[32] M. Ghaemy, B. Aghakhani, M. Taghavi, S.M.A. Nasab, M. Mohseni, Synthesis and characterization of new imidazole and fluorine bisphenol based polyamides: thermal, photophysical and antibacterial properties, React. Funct. Polym. 73 (2013) 555-563.
-
[1]
-
-
-
[1]
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
-
[2]
Xingyu Chen , Sihui Zhuang , Weiyao Yan , Zhengli Zeng , Jianguo Feng , Hongen Cao , Lei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635
-
[3]
Jiaxi Wang , Zhiwei Gao , Hao Liang , Qianyue Liu , Weiqian Jin , Huyang Gao , Bailei Wang , Ruikai Zhu , Jiahao Huang , Xiaowen Li , Xingmou Wu , Weijiu Mo , Yinhan Liao , Ming Gao , Xiaojie Li , Cuiping Li . NIR stimulated epigallocatechin gallate loaded polydopamine with enhanced antibacterial and ROS scavenging abilities for improved infectious wound healing. Chinese Chemical Letters, 2025, 36(7): 110569-. doi: 10.1016/j.cclet.2024.110569
-
[4]
Yanye Fan , Jingjing Chen , Bichun Chen , Jinyu Bai , Bowen Yang , Feng Liang , Lijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075
-
[5]
Peipei CUI , Yawen ZHENG , Pan LI , Peiyan GUAN , Zhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152
-
[6]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[7]
Shaofeng Gong , Zi-Wei Deng , Chao Wu , Wei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936
-
[8]
Shan-Shan Li , Juan Luo , Shu-Nuo Liang , Dan-Na Chen , Li-Ning Chen , Cheng-Xue Pan , Peng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424
-
[9]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[10]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[11]
Yingyue ZHANG , Liuqing KANG , Yating YANG , Xiaofen GUAN , Wenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100
-
[12]
Lingfeng Zheng , Chengyuan Lv , Wenlin Cai , Qingze Pan , Zuokai Wang , Wenkai Liu , Jiangli Fan , Xiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922
-
[13]
Chunmao Yuan , Yanrong Zeng , Lei Huang , Yu Mou , Jun Jin , Ping Yi , Yanmei Li , Xiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859
-
[14]
Yuyao Guan , Baoting Yu , Jun Ding , Tingting Sun , Zhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645
-
[15]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[16]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[17]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332
-
[18]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[19]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[20]
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1040)
- HTML views(7)
Login In
DownLoad: